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ABSTRACT 

Ubiquitous data flow through a directed complex network requires the complete structural 

controllability of the network. For evaluating the structural controllability of any network, 

determination of maximum matching in the network is a cardinal task and has always been a 

problem of immense concern. Its solution is mandatory in structural control theory for 

controlling real world complex networks. The existing classical approach through the 

Hopcroft-Karp algorithm and other proposed algorithms require the determination of the 

bipartite equivalent graph (i.e., network), which belongs to the NP-complete class of 

problems. In this article, we propose a degree-first greedy search algorithm to determine 

maximum matching in unipartite graphs without determining its bipartite equivalent. Thus 

this classical problem of the NP-Complete class can be solved using the heuristic, with 
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reduced complexity. This algorithm can be efficiently used to find maximum matching in 

most of the real world complex networks that follow Erdős-Rényi model. Simulation results 

obtained using our heuristic reveal that dense and homogenous networks can be controlled 

with fewer controller nodes popularly termed as driver nodes, compared to the sparse 

inhomogeneous networks. 

Keywords: Augmenting path, complex networks, driver nodes, Erdős-Rényi model, 

maximum matching, structural controllability, unipartite and bipartite graph. 

 

1. INTRODUCTION 

      A wide variety of real life structures can be naturally represented by complex networks. 

Any social network, different networks within our body (neural networks), various kind of 

Biological networks, World Wide Web etc can be effectively modelled in complex networks. 

These realistic systems are composed of highly dynamical units. The very first loom to 

capture the global properties of these practical systems as complex network model is to 

assume the dynamic units as the nodes of the complex network and the interconnections 

between those units as links. By help of Statistical Mechanics and different area of graph 

theory in Mathematics the structural behaviour of complex network can be analysed 

properly. 

     Complex networks have a vast scope of study which has made it a budding field of 

research. Controllability of these Complex networks is a very interesting and relevant topic of 

research among other areas regarding complex network study [1-3].  

      The contents of our paper are following: Section 2 describes the generic concepts that are 

required to design our heuristic. Some important definitions and generic concepts have been 

illustrated in section 2. Section 3 proposes heuristic followed by an example that explains this 

proposed heuristic. Section 4 discusses results and other inferences, while section 5 evaluates 

the complexity of this heuristic. Section 6 describes the scope of future work and concludes 

the paper. 

 

2. RELATED WORK AND MOTIVATION 

2.1 Controllability of a real-world network 

      Majority of the real-world systems are driven by non-linear processes, but the 

controllability of those non-linear systems is structurally similar to that of linear systems in 

many aspects. The canonical linear, time-invariant dynamics for a linear system is 

represented by next equation  



 Network Protocols and Algorithms 

ISSN 1943-3581 

2014, Vol. 6, No. 1 

 

 
                                                                                             3                                              www.macrothink.org/npa 

  

where x(t) is the state vector of dimension 1 X N, where N is the number of nodes at time t. A 

is the system matrix of dimension N X N, that describes the system’s wiring diagram and the 

interaction strength between the components. B is the N X M input matrix ( ) which 

identifies the nodes controlled by an external controller, and u(t) is input matrix of dimension 

M X 1. 

      If there exists an input u(t) which transfers the initial state X0 to the state X1 in a finite 

time t1,then the state X0 is called controllable. Analytically it is said that if the system is fully 

controllable then Kalman’s Controllability test matrix Qc    

                                                       Qc= [B: AB: A
2
B...A

n-1
B]                                            (2) 

will be of Rank N, that is 

                                                             rank (Qc) = N                                                        (3) 

       So, from the definition of controllability it can be said that, in a controllable system by 

the help of any external input the internal states of a system can be controlled. But for various 

reasons this classical definition of controllability fails to get acceptance in the case of 

complex networks. First and foremost, the classical definition of controllability is applicable 

for undirected networks whereas almost all real-world complex networks are directed. 

Secondly, complex networks normally consist of thousands of nodes and branches, it 

becomes almost impossible to calculate Kalman’s controllability test matrix Qc from these 

complex graphs [1-3]. These reasons dramatically limit the acceptability of the classical 

controllability theory for complex networks [4]. 

       Hence, to define the controllability of complex networks a new concept “Structural 

Controllability” evolved [5]. This concept was introduced by scientist Lin in the year 1970. A 

structurally controllable system can be shown to be controllable for almost all weight 

combinations. Thus, structural controllability helps us to overcome our inherently incomplete 

knowledge of the link weights in the matrix A [5]. 

     In case of structural controllability we assume that G(A) is a directed graph drawn from an 

equivalent directed network. This graph G(A) can also be defined by the linear equation (1). 

Here the state or system matrix A = (aef) nxn, here the element aef is 0 if no link exists between 

the nodes e and f in the graph G (A). Otherwise, aef represents the weight of the link between 

the nodes e and f. It will be positive or negative depending on the direction of the link i.e. it is 

from e to f or from f to e [5].  

    The set of nodes in the directed graph G(A) (Fig. 1a) can be divided into two categories, 

i.e. N=NA U NB,  i) the set of state nodes NA  (Fig. 1b) 3 & 4, and ii) the set of input nodes NB, 
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(Fig:1b) 1,2 and 5. If there is m number of inputs in a directed graph then the number of input 

nodes will also be m. The edges of the graphs are also divided into two categories, i.e. 

E=EAUEB, i) the set of edges between the state nodes EA (from Fig. 1b: E) and ii) the set of 

edges between the state nodes and input nodes or between two input nodes EB (from Fig: 1b 

A, B, C, D, F, G, H, J &K). The input nodes of a digraph are also called the Origin and the 

state nodes directly connected with the input nodes are called controlled nodes. The number 

of controlled nodes is normally always greater than the number of origins because one origin 

can be connected with several controlled nodes. The input nodes are called Driver nodes ND 

(from Fig: 1b 1, 2 and 5). It is obvious that the number of driver nodes in a digraph will be 

equal to the number of total inputs (from Fig. 1b: U1, U2 and U5) to the graph.   

    From the classical definition of controllability it can be said that a system can be controlled 

by external inputs if and only if the system is fully controllable and from the definition of 

driver nodes we can say that the number of driver nodes are always equal to the number of 

inputs to the system. Now, if we summarize these two facts then it can be concluded that if 

minimum number of driver nodes for a digraph can be calculated then the number of inputs 

needed to control the system can also be evaluated. We are mainly interested in identifying 

the minimum number of driver nodes, ND, whose control is sufficient to control the system’s 

dynamics.  

 

                                                  1(a)                                     1(b) 

Fig: 1 Different nodes and links in a digraph 

    Now, in the basic concept of ‘Structural Controllability’ it is considered that the system 

obeys the linear equation (1) and the matrixes A & B are assumed to be structured. (A, B) are 

structured means the elements of A and B are either 0 (represents absence of connection 

between parameters) or independent free parameters (weights of the links) [13]. The System 

will be called ‘Structurally controllable’ if the independent free parameters of the matrix pair 

A and B can be fixed to certain values for which A and B can satisfy Kalman’s controllability 

test. When a system is controllable for any value of the independent free parameters of (A, B) 

then the system is called ‘Strongly Structurally controllable’ [6]. 
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2.2 Lin’s structural controllability theorem:   

    Scientist Lin has given a structural controllability theorem [5] where he introduced two 

conditions a) inaccessibility and b) dilation. In a digraph a node is called inaccessible if that 

node can’t be influenced by an external input. For example, an isolated node is an 

inaccessible node. In a digraph, if there is a driver node which is not the starting node of a 

directed path then the nodes upstream to the driver node will be the examples of inaccessible 

nodes as those nodes can’t be accessed by the external input connected to the driver node. In 

Fig 2, node 4 is inaccessible node. 

 

                      Fig: 2 Inaccessible node                                           Fig 3: Dilation 

    In a digraph if there exist greater number of subordinate nodes than the number of superior 

nodes then it is said that the graph contains dilation. In Fig 3, node 2 and 3 are subordinate 

nodes which are controlled by one superior node 1. So, here dilation exists in the digraph. In 

Lin’s structural controllability theorem it is stated that a digraph will be fully structurally 

controllable if and only if it contains no inaccessible nodes and dilation. 

    Now to evaluate structural controllability of a certain digraph we have to determine the 

number of external inputs needed to control the network. It will be highly economical if we 

can be able to determine the minimum number of inputs to control it. For this purpose 

Minimum input theorem can be followed. 

2.3 Minimum inputs theorem 

 

    The Minimum Inputs theorem states that, in a controlled network, the minimum number of 

inputs equals the minimum number of driver nodes needed to fully control the network. If the 

minimum number of driver nodes is one, i.e. only one input is necessary to fully control the 

network, then the controlled network is said to be perfectly matched. 

 

 2.4 Maximum matching in undirected networks [7] 

 

    Another important concept in connection with determination of minimum number of 

external input is maximum matching. Let G = (V, E) be a finite undirected graph (without 
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loops or multiple edges) having the vertex set V and the edge set E. An edge incident with 

vertices v and w is denoted as {v, w}. A set M belonging to E is a matching if no vertex v ε V 

is incident with more than one edge in M. A matching of maximum cardinality is called a 

maximum matching. 

 

2.5 Maximum matching in directed networks 

     

    A matching M of the graph G is an edge set such that no two edges of M share their 

endpoints. Given a bipartite graph G = (V, E), maximum matching is a matching that 

contains the largest possible number of edges [4,8]. For a given directed complex network, 

the largest set of edges, without common start and end nodes is said to be the maximum 

matching for that network. If maximum matching of a network yields only one start node and 

end node, then it is called complete matching (Fig. 4) [9]. 

 

 

  Fig: 4 Maximum Matching 

2.6 Driver node and augmenting path 

     

    In a maximum matched undirected network, driver nodes are designated by the end points 

of matched paths, called the augmenting paths. In case of directed networks, driver node is 

the starting node of the augmenting path, where desired input is applied for structurally 

controlling the whole path corresponding to it. In the Fig. 5, N1 and N2, and N4 are the driver 

nodes, and the directed path (marked in red) is the augmenting path corresponding to driver 

node N1. Nodes N2 and N4 are isolated nodes. Hence they must be controlled independently. 

So, N2 and N4 are also treated as driver nodes. 
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Fig 5. Driver nodes (N1, N2, and N4) with their augmenting paths (marked in red) 

3. HEURISTIC FOR MAXIMUM MATCHING 

       In this section, we propose a heuristic for finding maximum matching in directed graphs 

directly from its unipartite form, i.e., without obtaining the bipartite equivalent. The main 

advantage of our approach over the previously existing ones is that it not only determines the 

number of driver nodes, but also specifies them along with their corresponding augmenting 

paths [25]. Thus all information required for full controllability of the network is obtained. In 

directed complex networks, determination of augmenting paths refer to the sets of directed 

links which share no common start or end point. 

      The steps given below are to be followed for determining maximum matching in directed 

networks using our heuristic: 

Step 1: Firstly, determine the node in the part of the network under consideration, which 

possesses the maximum out degree. Let the node be denoted by Na. This node Na is 

considered as the driver node.  

Step 2: Next, determine the node connected to Na (driver node) having the maximum out 

degree. Let the node be denoted as Nb. 

Step 3: Now, consider the link from node Na to Nb, and discard all other links connected to 

N1, thus setting its degree to 1. Include Na to the augmenting path and discard it from further 

consideration. 

Step 4: Finally, assign Nb to Na and repeat step 2 and step 3 till the degree of Na becomes 1.  

After completion of step 4, the augmenting path having Na (from step 1) as its driver node is 

obtained. 

Step 5: Repeating steps 1 to 4, the next augmenting path is obtained.  

Step 6: Repeat the whole process till the entire network has been considered. 

N1

N1 

N4

N4 

N6

N6 

N2

N2 

N5

N5 

N3

N3 

N1 

  N4 

N6 

N2 

N5 

N3 

U1 
U2 

U3 
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      Now, we explain our algorithm with a simple example. We consider a network with 6 

nodes and 7 edges given below: 

 

 

 

 

 

 

 

Fig 6(a) 

     We explain our heuristic with Fig. 6. Fig. 6(a) shows the directed network on which we 

implement our algorithm.  

          

 

 

 

 

 

 

Fig 6(b)                                                                   Fig. 6(c) 

       Applying Step 1 of our heuristic on the network 6(a), the maximum out-degree node is 

obtained as N1. N1 is considered as a driver node (marked orange), as shown in Fig. 

6(b).Now applying Step 2 on the Fig. 6(b), N6 is obtained as the maximum out-degree node 

connected to the driver node N1. According to Step 3, all the links of N1 are discarded except 

the one from N1 to N6 (marked in violet), as shown in Fig. 6(c). 

 

 

 

N1 

N4 

N6 

N2 

N5 

N3 
N1 

N4 

N6 

N2 

N5 

N3 

N1 

N4 

 

N6 

N2 

N5 

N3 

N1 

N4 

N6 

N2 

N5 

N3 
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Fig 6(d)                                                                      Fig 6(e) 

 

      As in Step 4, the above process is repeated for the node N6, N5 and N3, till degree of 

those nodes becomes 1, as in Fig. 6(d). In Fig. 6(e), the largest set of edges having no 

common start and end nodes is obtained. Thus fig. 6(e) gives the maximum matching of the 

original network. Here, nodes N4 and N2 are isolated nodes. Hence, both N2 and N4 are 

considered as driver nodes. The network contains only one augmenting path (marked in 

violet) with N1 as the driver node, and N6, N5, N3 as the matched nodes (marked in blue).  

     Step 5 is skipped here, as there clearly exists no other augmenting paths. In Step 6, we 

ensure that the whole network has been traversed once. 

 

 

 

 

 

 

 

 

 

 

Fig 6(f) 
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     Finally, the required controlled network is obtained, which is controlled by three input 

vertices u1, u2, u3 (marked in pink) applied to the state vertices N1,N2 and N4 (marked in 

brown) respectively, as shown in Fig 6(f).  

 

4. SIMULATION RESULTS 

4.1. Simulation Environment 

     Our algorithm has been mainly applied to networks which follow Erdős-Rényi model. The 

networks under consideration has been generated by a simulator namely Cytoscape (Version 

2.8.3). Cytoscape is an open-source bio-informatics software platform for visualising 

molecular interaction networks and integrating with gene expression profiles and other state 

data. Here, we have used the random network generation plugin with the latest version of 

Cytoscape, released in May, 2012. We have simulated our algorithm on the generated 

networks using Eclipse, a Java integrated development environment. Eclipse contains a base 

workspace and an extensible plug-in system for customizing the environment. 

     During generation, the networks were specified by the parameters N (number of nodes) 

and L (number of links). In our simulation results, the degree of the nodes has been 

considered as the parameter measuring the criticality or priority of the nodes. It should be 

kept in mind that other characteristic (attributes and variables) of nodes can be treated as the 

parameter. Our algorithm has been applied to different types of networks, specified by graphs 

with particular number of links and nodes. From the simulation results we also arrive at some 

intuitive interpretations. We have classified the graphs as dense, semi-dense and sparse. The 

graphs which have comparatively large number of links with respect to the number of nodes 

are considered to be dense. On the other hand, the graphs which have very small number of 

links with respect to the size of the network are considered sparse. The graphs whose density 

of links with respect to number of nodes lies in between these two classes have been 

classified as semi-dense. It is clear from the definition mentioned above that this 

classification is not robust in practical sense. 

     From the number of driver nodes obtained from our simulation results it is clear that lesser 

number of driver nodes is suffice to structurally control a denser network and the number 

increases as the network tends to become sparse. It is also intuitively clear that when number 

of links in a network increases (dense network), number of augmenting paths should 

decrease, as length of such paths increase with increase in connectivity among the nodes. In 

another paper [8], Barabasi et.al have shown that nd varies as e
-<k>

, where k is the Poisson 

variable where P(k) represents the probability of a link to exist between two nodes, and nd is 

the density of driver nodes, obtained as the ratio of the minimum driver nodes required and 
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the total number of nodes in the entire network. As a network becomes denser, <k> increases 

and thus nd decreases, which leads to similar result obtained from our simulation. 

In the tables below, N: Number of nodes, L: Number of links, nd: Density of driver nodes, Nd: 

Number of driver nodes. (Nd=N * nd) 

     In table 1, we show the experimental results for dense networks like World Wide Web, as 

obtained using our algorithm. We see that these dense networks can be controlled by very 

small number of driver nodes (Nd) compared to the total number of nodes in the network (N). 

We plot our results for these dense networks in fig. 7.   

TABLE 1: Dense networks 

Type Name N L L/N Nd nd
experimental

 Run time 

(in mSec) 

World Wide Web Political 

blogs 

1224 19025 15.5433 76 0.062091503 658 

 

Intra-organizational 

Freemans-2 34 695 20.44118 2 0.058823529 128 

Freemans-1 34 830 24.41176 1 0.029411765 146 

Regulatory TRN-Yeast-1 441 12873 29.19048 15 0.034013605 532 

 

 

Figure 7: nd experimental vs L/N for dense networks 

 

     In table 2, we show the experimental results obtained by applying our heuristic to semi-

dense networks like the food web. We see that controlling a semi-dense network with same 

number of driver nodes as a dense network requires more number of driver nodes compared 

to the dense network. This is due to the reason that L/N ratio is less in case of these semi-

dense networks. We show the variation of driver node density (nd) with the density of the 

network L/N in fig 8. 
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TABLE 2: Semi-dense networks 

Type Name N L L/N Nd nd
experimental Run time 

(in mSec) 

Food Web 
 

Ythan 135 601 4.451852 25 0.185185185 169 

Little Rock 183 2494 13.62842 15 0.081967213 257 

Seagrass 49 226 4.612245 8 0.163265306 70 

Neuronal Caenorhabditus 
elegans 

297 2345 7.895623 35 0.117845118 260 

Social 
Communication 

Ucloline 1899 20296 10.68773 176 0.092680358 780 

Email Epoch 3188 39256 12.31368 252 0.079046424 1257 

Trust Wikivote 7115 103689 14.5733 486 0.068306395 4025 

 

      

 

Figure 8: nd experimental vs L/N for semi-dense networks 

     Table 3 shows the experimental results obtained for sparse networks. We see that to 

control a sparse network completely, more number of driver nodes are necessary compared to 

dense or semi-dense networks. The variation of driver node density (nd) with the network 

density (L/N) is shown in fig. 9. 
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TABLE 3: Sparse networks 

Type Name N L L/N Nd nd
experimental

 Run time (in 

mSec) 

 
Regulatory 

TRN-EC-2 418 519 1.241627 237 0.566985646 162 

TRN-EC-1 1550 3340 2.154839 636 0.410322581 499 

TRN-Yeast-2 688 1079 1.568314 347 0.504360465 214 

Electronic 
circuits 

S208 122 189 1.54918 67 0.549180328 84 

S420 252 399 1.583333 128 0.507936508 107 

Food Web Grassland 88 137 1.556818 51 0.579545455 60 

 
 
Metabolic 

Escherichia coli 2275 5763 2.533187 844 0.370989011 609 

Saccharomyces 
cerevisiae 

1511 3833 2.536731 539 0.356717406 418 

 
    Trust 

Prison Inmate 67 182 2.716418 22 0.328358209 66 

College Student 32 96 3 9 0.28125 47 

 
Internet 

P2p-2 8846 31839 3.599254 2388 0.269952521 3541 

P2p-3 8717 31525 3.616497 2493 0.285992887 3593 

P2p-1 10876 39994 3.677271 2926 0.269032733 6461 

       

 

Figure 9: nd experimental vs L/N for sparse networks 
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     Again from the results in Table 4, we see a good match between the results obtained by 

applying our heuristic on some real world networks and the density of driver nodes (nd
real

) 

calculated in the practical real-world networks [8]. 

 

TABLE 4: Comparison of our results with that of the real network [8] 
 

N L L/N Nd nd
real nd

experimental 

418 519 1.241627 237 0.519 0.566986 

88 137 1.556818 51 0.523 0.579545 

2275 5763 2.533187 844 0.382 0.370989 

1511 3833 2.536731 539 0.329 0.356717 

297 2345 7.895623 35 0.165 0.117845 

34 830 24.41176 1 0.029 0.029412 

      

     From table 4, we see that for many networks, the mismatch in values of nd experimental 

compared to nd real is notable. Fig. 10 shows the comparison of the results (nd) using our 

heuristic and that of the real network. Even if controllability is decided mainly by degree, this 

mismatch in results might be due to the effect of degree correlations. However, network 

controllability can be altered only by using betweenness centrality and closeness centrality, 

without using degree (graph theory) or degree correlations at all.  

 

 

Figure 10: nd experimental vs L/N for sparse networks 
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5. COMPLEXITY 

     In the theory of computational complexity, NP may be defined as the set of decision 

problems that can be solved in polynomial time [4] on a nondeterministic Turing machine. A 

problem p in NP is also in NPC if and only if every other problem in NP can be transformed 

into P in polynomial time. The available approach for solving the problem of determining 

maximum matching in directed graphs belonged to this class of problems. 

     In the worst case, it may happen that all links will exist among n number of nodes. So at 

first we have to search among n nodes for determining the node with the maximum out 

degree. For the next step, we have to search among (n-1) nodes and so on till the number 

becomes 1. 

     Thus, required time complexity in the worst case simply becomes 1+2+3+...+n=  = 

n (n+1)/2 = (n
2
+n)/2. 

So time complexity of this algorithm is of the order of n
2
. 

     Comparison with the O (n
5/2

) algorithm proposed by Hopcroft and Karp combined with 

classical process of obtaining bipartite equivalent of complex networks, reveals the advantage 

of our heuristic. From our heuristic we are able to determine uniquely the driver nodes and 

corresponding augmenting paths. Thus approach of structurally controlling any network can 

be uniquely and efficiently found out. 

 

5. CONCLUSION 

     After obtaining the driver nodes and corresponding augmenting paths, we apply signals to 

the driver nodes, whose retrieval indicate the continuity and accessibility of the augmenting 

paths corresponding to some specific retrieving technique for the applied signals. Any defect 

in the network can thus be efficiently detected and thereby down time of the whole system 

can be reduced. This increases the robustness of the network against unwanted failures and 

breakdowns. [10]  

     We ended up with two major findings while developing the heuristics for maximum 

matching. Firstly, we see that the number of driver nodes for a complex network, compared 

to the total number of nodes in the network increases with the density of the network. 

Secondly, we also infer from our simulation that a system’s controllability is mainly 

determined by the underlying network’s degree distribution, P (kin, kout).   

     Control is the most important issue in the real world complex networks. Till date, the most 

noted algorithm available for the computation of maximum matching in complex networks is 

the classical Hopcroft-Karp algorithm [7], and some other algorithms [11-12] have been 
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proposed, but all of them require that the isomorphic bipartite equivalent of the network be 

obtained. Again, the bipartite equivalent of all complex networks cannot be determined. 

Neither does an algorithm exists to determine the bipartite equivalent of any given unipartite 

complex network. Hence, the proposed algorithm might well serve the purpose of finding the 

maximum matching, and thus fully controlling a directed weighted real world complex 

network. Also, the algorithm may be easily modified to solve maxflow problems. 

     The approach which has been described in this article is very much relevant in the real-life 

complex networks like power grids, Internet networks, Different biological networks (in 

brain or in nervous system), ecological networks etc. By using the algorithm we can 

recognize the set of driver nodes and the time–dependent control of those nodes can guide the 

network dynamics. From the results which have been shown in this paper we can conclude 

that for a dense and homogeneous network the number of driver nodes is least. It increases 

with the decrease in number of links in a network. So the number of driver nodes will be 

larger for semi-dense and sparse networks than the dense one. The networks with lesser 

number of driver nodes are easier to control. The developed approach provides a framework 

to deal with the controllability issue of an arbitrary network which also represents a 

fundamental step towards the ultimate control strategy of complex systems. 

     In the long run, we need to solve numerous questions that are being raised. For example, 

we need to ensure whether the networks are efficient and robust against all sorts of failures. 

i.e. site or bond. Does these complex networks help in information flow? How to predict the 

health of the system represented by the network? 

     Speculation is that the solutions to these questions will mark the opening of new 

dimension, in studying the controllability of complex networks. 
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