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Abstract 

Internet of Things (IoT) refers to the paradigm of having sensor-enabled devices represented 

on a global inter-connected web. A sensor network is a customized network of sensor nodes 

deployed for a specific objective. Due to the variety of application areas, objectives and 

end-user requirements of sensor networks can differ widely between deployments. IoT, on the 

other hand, envisions a homogeneous presentation of information from sensor nodes for 

mining and analysis. It promises support for machine-to-machine (M2M) communication 

between sensor nodes. To tackle such conflicting requirements, we present RAPIDSNAP—a 

scriptable application framework for rapid deployment of sensor networks—which acts as a 

smart middleware to adapt sensor networks for IoT. RAPIDSNAP provides script-based 

extensions to facilitate development of customized sensor network applications while 

providing bridge-interfaces for integrating them with IoT repositories such as Wisekar. We 

illustrate the impact of RAPIDSNAP and Wisekar by using them to propose extensions to a 

sensor network based health application—Gaitsense. We conclude by comparing 

RAPIDSNAP with other frameworks. 

Keywords: Internet of Things, sensor network, application framework, scriptable application, 

RAPIDSNAP, Rapidapp, JavaScript, Gaitsense, Wisekar 
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1. Introduction 

Application development and deployment is more challenging for resource-constrained 

sensor networks than it is for legacy telecommunication networks. User applications for 

sensor networks have to be able to seamlessly adapt to the changing deployment conditions, 

sensing requirements, and instrumentation capabilities. At the same time, information from 

heterogeneous sensor networks has to be assimilated into a single standardized system to 

facilitate rich data analytics. The paradigm of creating an information-web of sensor-enabled 

devices, which naturally includes interconnecting multiple sensor networks, has been 

termed—Internet of Things (IoT). Characteristic attributes of IoT include having a virtual 

identifier for each “thing” (here, a sensor node) on the Internet and providing support for 

machine-to-machine (M2M) interaction between things. Due to the heterogeneous 

deployment characteristics and objectives of sensor networks, development of a unified 

framework that seamlessly achieves the goals of IoT is non-trivial. 

We have developed a flexible IoT repository called Wisekar [1], hosted at 

http://wisekar.iitd.ac.in, for structured archival and exchange of sensor events. Wisekar 

provides an API through which events can be streamed over the Web into datasets called 

Active Sets where each Active Set can store information in an application-specific standard, 

such as SensorML [2] or EEML [3]. Wisekar allows information represented in multiple 

standards to co-exist. The configuration of a Wisekar Active Set can be tailored to the 

requirements of a given sensor network deployment, where each physical node corresponds 

to a unique virtual node defined in the Active Set. 

In order to rapidly deploy customized sensor network applications, we have designed and 

implemented a framework called RAPIDSNAP [4]. RAPIDSNAP provides support for 

development of deployment-specific extensions called Rapidapps that act as 

communication-bridges between a sensor network deployment and Wisekar. We extend our 

discussion on protocols and algorithms associated with RAPIDSNAP, and illustrate how 

RAPIDSNAP and Wisekar are jointly used for IoT applications. 

Gaitsense [5] is a sensor network based health application developed by us. It consists of 

a network of accelerometer-enabled sensor nodes called gait nodes mounted on mobile 

subjects for activity monitoring and fall detection. A gait node generates an event when the 

subject associated with it falls or changes its posture, for example, from standing to walking. 

The event travels through the relay (sensor) nodes to a central station where an action is 

initiated such as the generation of an email to call for emergency services. We note that 

notifying fall events can help prevent fatalities in the elderly. We extend the capabilities of 

Gaitsense by proposing novel extensions to it with the help of RAPIDSNAP and Wisekar. 

Specifically, we illustrate how Wisekar harvests information from a RAPIDSNAP 

deployment into its structured archival system. We also discuss how RAPIDSNAP is 

configured to use Wisekar for tasking sensor networks, to achieve M2M communication – 

one of the end-objectives of IoT. 

The rest of the paper has six sections. Section 2 gives an overview of related work 

motivating the development of RAPIDSNAP. It discusses the advantages of an integrated 

RAPIDSNAP and Wisekar system over other frameworks, for IoT applications. Section 3 

presents the RAPIDSNAP architecture and protocols in detail. Furthermore, ways to extend a 
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RAPIDSNAP network for heterogeneous deployments and role of Wisekar in achieving 

M2M communication between multiple RAPIDSNAP deployments are discussed. 

Customization of RAPIDSNAP and Wisekar for Gaitsense is presented in Section 4. 

Rapidapps are developed to realize the implementation of a clustering algorithm for 

Gaitsense and to selectively log Gaitsense events at Wisekar. Section 5 discusses other 

algorithms integrated with RAPIDSNAP. A comparison of RAPIDSNAP with other 

script-based frameworks is presented in Section 6. Finally, we conclude by discussing the 

impact of the proposed framework and highlighting its future scope in Section 7. 

 

2. Background 

Code generation frameworks [6, 7] for sensor networks and ‘Service oriented sensor and 

actuator networks’ (SOSANETs) [8] have been proposed. Argos [9] is an extensible 

middleware container into which hot-plug Java services are added or removed to meet 

deployment requirements. Agilla [10] middleware offers a flexible platform for sensor nodes 

which allows deployment specific mobile agents to be injected into the network. To simplify 

programming, sdlib [11] offers a library wrapper around NesC (in TinyOS [12]) with 

get()/give() interfaces. jWebDust [13] offers an n-tier sensor-network application architecture. 

The combination of a scripting language and a strongly typed language has been used with 

simulation frameworks, such as discrete event simulators ns-2 (oTcl, C++) [14] and 

VisualSense (Python, Java) [15]. In SensorWare, nodes execute TinyTcl scripts over an 

RTOS [16]. Maté is a virtual machine on TinyOS that executes TinyScript and Mottle 

scripts [17]. Tapper [18], used with the Rappit deployment tool, and SCript [19] allow scripts 

to run on sensor nodes.  

Information from sensor nodes terminates at a central station called a gateway. The 

gateway of a sensor network is a useful place to deploy algorithms for customized interaction 

with the network. Using a scripting (interpreted) language for developing such algorithms can 

be used to switch the algorithm(s) (and therefore, the network objective) in a live scenario 

without disturbing any other component of the deployment. Few frameworks provide such 

flexibility which allows effortless reconfiguration of a sensor network in action. Rappit is an 

embedded system application deployment tool that generates code for embedded systems 

(from sensor nodes to fast Ethernet) and has a user-side script interface in Python [20]. The 

need for customizable application frameworks for sensor networks has been highlighted in [8, 

13].  

Cross-platform script-based frameworks such as PhoneGap [21] have emerged. 

PhoneGap allows native applications to be written in HTML and CSS with phone hardware 

access support available through JavaScript. Like heterogeneous mobile platforms, the sensor 

network ecosystem is fragmented by numerous sensors, algorithms for different objectives, 

and multiple operating systems. RAPIDSNAP tries to standardize and implement multiple 

algorithms in a single integrated framework with support for deployment specific 

customization in JavaScript. PhoneGap facilitates seamless interaction between JavaScript 

and phone sensors whereas RAPIDSNAP achieves this between JavaScript and sensors in the 

network. 
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Figure 1: RAPIDSNAP Architecture 

SPINE [22-24] is a deployment framework for signal-processing applications in Body 

Sensor Networks which provides a Java API for writing user applications. In contrast, the 

interpreted JavaScript-based Rapidapps used for developing RAPIDSNAP user applications 

allow their behaviour to be changed or updated at run-time. Furthermore, SPINE provides for 

one-hop communication between sensor nodes and the user application on a central 

Controller whereas RAPIDSNAP supports multihop communication through the integrated 

routing algorithms – AODVjr and PARTROUTE. 

We note that SPINE2 [25] improves SPINE by adding support for node-platforms other 

than TinyOS and improving the software abstraction on the nodes for developers’ 

convenience. A Java-based Building Management framework (BMF) has been proposed in 

[26] where OSGi plugins are used to extend the framework. Although the plugins in BMF are 

hot-swappable, development of a framework-extension with JavaScript in RAPIDSNAP is 

typically faster as recompilation of the extension during development or evaluation is not 

required. Also, JavaScript allows a large pool of web-developers to write sensor network 

applications. Integration of RAPIDSNAP with Wisekar vastly expands the application scope 

of RAPIDSNAP as a key component of pervasive IoT systems. 

 

3. RAPIDSNAP Architecture 

The RAPIDSNAP architecture has three stages as shown in Fig. 1. Stage 1 typically 

consists of a mesh of sensor nodes communicating with a designated node wired to the 

gateway called the base-station. The wired link is a serial interface in our implementation of 

RAPIDSNAP. We have implemented routing and localization algorithms on sensor nodes in 

Stage 1 with TinyOS 2.x [12] on TelosB nodes. The network protocol format defined by us in 

Section 3.1 is used by the algorithms. The protocol is independent of the underlying 

sensor-node hardware and operating system. Therefore, it can be used with other nodes and 

operating systems or a combination of them. 

The gateway in Stage 2 acts as an interface between the user application on the legacy IP 

network (LAN, WAN) and other event sources, on an IP network for example. Every 

command from an application to the sensor network or sub-packet from the network, such as 

an event or a command response, to the application is logged in the DBMS and, in the 
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process, tagged with a unique packet ID by the gateway. The algorithms realized with 

RAPIDSNAP do not require the network to be time-synchronized. In the absence of a 

reference network clock, the gateway acts as a global clock and timestamps each packet it 

receives.  

The C++ based User Application in Stage 3 has two subsystems—the User Subsystem and 

the Core Subsystem. The core subsystem in the user application abstracts the user subsystem 

from the details of communication with the sensor network, legacy networks and the DBMS. 

For a given sensor network deployment, the user subsystem has the customized control and 

visualization components for the user. Customization is achieved with JavaScript based 

scripts called Rapidapps as shown in Fig. 1. Multiple Rapidapps, where each Rapidapp may 

implement a different algorithm, can be loaded into the user application and executed on the 

fly. 

3.1 Communication Protocol for Sensor Nodes  

In Stage 1, RAPIDSNAP standardizes the network layer of sensor nodes and the layers 

above it. We review the standards developed for packet formats in distributed systems to lay 

the groundwork for discussing inter-node communication with RAPIDSNAP. As sensor 

nodes are memory and energy constrained, energy spent in transmission and reception of 

packets plays a key role in determining the life of the network. 

3.1.1 Background 

There are three popular machine-to-machine (M2M) encoding formats—XML, JSON and 

Binary. An XML message contains both the data and the meta-data describing it. The 

self-descriptive nature of XML makes it platform independent. However, an XML parser is 

required for formatting and interpreting verbose XML packets, which is an overhead on 

memory and communication energy. Thus, the suitability of XML needs to be evaluated 

keeping in view the capability of sensor nodes and deployment requirements. Simple Object 

Access Protocol (SOAP) is an XML based standard for development of web services. An 

application consuming a web-service uses a SOAP client library to convert remote procedure 

calls into XML messages sent to the server.  

 

Figure 2: Sensor Network Packet Formats 
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Figure 3: Mapping of DATA packet sub-packets to DBMS tables 

 

XML has a clear advantage with web services since the client and the server are not 

energy-constrained, and XML allows structured messages to be exchanged over the Internet. 

JavaScript Object Notation (JSON) is popular textual data-interchange format derived from 

JavaScript that has a relatively compact notation and therefore lower communication 

overheads when compared to XML [27]. XML is considered to be a more suitable 

document-interchange format. JSON is popular with RESTful web-services as conformation 

to XML is not essential with REST unlike SOAP. JSON-RPC is a remote procedure call 

mechanism with JSON as the underlying message exchange format [28]. However, even 

JSON is less energy-efficient than a packed binary-encoded message where the 

communicating entities are aware of the message format. Java RMI and CORBA are RPC 

implementations where packed binary byte sequences are used. Both sender and the receiver 

are aware of the message format and its decoding method since the message is not 

self-descriptive. 

RMI uses Java Object Serialization to flatten objects into a sequence of bytes and share 

them between JVMs [29]. CORBA is a standard that uses similar marshalling and 

unmarshalling operations at the sender and receiver [30]. RMI-IIOP allows RMI to 

interoperate with CORBA. 

3.1.2 Communication Protocol and DBMS Schema Considerations 

Due to resource-constraints in nodes, we choose the energy efficiency of binary encoding 

over flexibility of JSON or XML. The packed binary control and data formats used with 

RAPIDSNAP are shown in Fig. 2. Control packets are used by the routing, localization, 

clustering, and related distributed algorithms to optimally manage or support the network. 

The Type field determines the fields in the Body and the length of the packet. Data packets 

have a constant type—DATA which is followed by the Routing Fields segment that stores 

information needed to transport the data packet through the network to the base-station or 

vice-versa. Therefore, these fields are based on the routing protocol used. Since table-driven 

routing algorithms integrated with RAPIDSNAP—PARTROUTE [31] and 

AODVjr [32]—only require source, destination and the next-hop information in a packet, the 
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Routing Fields segment is short. For source-routing algorithms like DSR [33], the segment 

could be much longer. The Payload segment contains measurements from sensors. 

Payloads in data packets are divided into command, command response and event 

sub-packets. Commands originate at the user application and terminate at a node in the sensor 

network while events and command responses originate at a sensor node and terminate at the 

user application. Command responses are generated only in response to received commands 

whereas events are generated asynchronously. RAPIDSNAP maps each sub-packet (event, 

command and command response) to one of a set of predefined formats. Storage optimization, 

schema design and evolution happens with respect to these formats. For example, a short and 

a long payload correspond to two different event formats which are mapped to database 

tables 1 and 2 as shown in Fig. 3. For each event, a unique packet ID is generated by the 

gateway. The event with the long payload is split across the two tables, where the packet ID 

for this event is stored in both the tables. Packet ID in table 2 acts as a foreign key to packet 

ID in table 1 which serves as the primary key. 

3.2 Extending the Network with the RAPIDSNAP Gateway 

Having the gateway in a separate stage allows RAPIDSNAP to address a variety of 

configuration scenarios. Fig. 4 shows a series of sensor networks connected to a single user 

application by cascading the gateways together. The IP link between the gateways could be 

an Ethernet or a Wi-Fi link. Furthermore, Network 1 and Network 2, associated with 

base-stations BS 1 and BS 2, need not be similar to each other in terms of their objectives or 

the architecture of their constituent sensor nodes. Thus, the gateway allows RAPIDSNAP to 

create large, hierarchical, distributed and heterogeneous sensor networks. From Fig. 1, we 

note that one gateway becomes an event source for the other. 

 

 

Figure 4: Extension of a RAPIDSNAP Network 
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3.3 Rapidapps for Customized Control and Protocol Translation 

3.3.1 Customized Control 

Javascript-based Rapidapp scripts allow RAPIDSNAP to address automated and 

customized control requirements. Multiple Rapidapps can be used to simultaneously address 

different target requirements. Each Rapidapp avails the core subsystem services through an 

instance of an Adaptor class made available by the core-subsystem [4]. Listing 1 shows an 

example Rapidapp where the function handlePacket() receives an event from the network and 

extracts its payload type. Available to handlePacket() is adaptor, an instance of Adaptor, 

which is used to obtain the numeric event type associated with string NodeInfo, stored in 

nodeInfoEvent. If the payload type matches nodeInfoEvent, an acknowledgement for the 

receipt of this event is printed. Adaptor provides methods to allow the context information of 

handlePacket() to be preserved across multiple handlePacket() invocations. 

Each user application may have multiple Rapidapps, each executing a different algorithm. 

For example, there could be three Rapidapps 1, 2 and 3 as shown in Fig. 5 with the same 

entry method handlePacket() where the implementation of handlePacket() is different for 

each case. All Rapidapps receive (a) asynchronous events, commands and 

command-responses from the gateway and (b) periodic events from internal timers in the user 

application for the different algorithms they execute. Although commands for the sensor 

network are generated by the user application, it is the gateway which assigns a packet ID to 

the command and returns a copy of it to the Rapidapps for possible action. 

3.3.2 Protocol Translation between Sensor Networks and IoT Repositories 

Wisekar [1] offers a RESTful API interface for contribution of sensor events. We have 

extended the RAPIDSNAP user application to allow Rapidapps to invoke RESTful 

web-services. This enables multiple RAPIDSNAP installations at (perhaps) geographically 

distributed locations to communicate with Wisekar as shown in Fig. 6. Nodes in different 

RAPIDSNAP installations can use Wisekar to share information with each other simplifying 

the realization of IoT. In Section 4, we use Gaitsense as a case-study to discuss this 

integration mechanism. 

 

Listing 1: Example of a Rapidapp 

function handlePacket() { 

// adaptor object and packet fields as arguments 

// are passed implicitly to handlePacket 

var payloadType = arguments[1]; 

var nodeInfoEvent = adaptor.getPayloadTypeFromString("NodeInfo"); 

 

// process NodeInfo Events 

switch(payloadType) { 

case nodeInfoEvent: 

adaptor.print("NodeInfo event received"); 

} 

} 
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Figure 5: Multiple Rapidapps in the RAPIDSNAP user application where each Rapidapp executes a different 

algorithm 

 

Figure 6: Protocol translation between RAPIDSNAP and Wisekar 

 

4 Customizing RAPIDSNAP for a Health Application—Gaitsense 

We use RAPIDSNAP and Wisekar to propose a set of extensions to the sensor network 

based Gait Assessment System—Gaitsense—introduced in Section 1. We first show how a 

Rapidapp is used to realize a clustering algorithm GAROUTE for energy-efficient routing of 

gait-node events. Then, we present another Rapidapp which filters and conditionally logs 

these events in Wisekar. 

4.1 The GAROUTE Clustering Algorithm for Gaitsense 

We have proposed a clustering algorithm GAROUTE [34] which uses mobility awareness of 

sensor nodes, added with accelerometers, to achieve energy-efficient clustering. We present 

the motivation for using GAROUTE with Gaitsense before presenting its integration with 

RAPIDSNAP. GAROUTE uses genetic algorithms to optimize a linear combination of three 
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parameters of a sensor network with mobile nodes: Mean Communication Energy (ME), 

Clusterhead Fraction (CHFrac) and Total Clusterhead Speed (CHSpeed). The parameters are 

scaled by their respective factors SME, SCHF and SCHS. GAROUTE is simulated on a 

50-node network shown in Fig. 7 with the sink (gateway) placed at (100, 100) [34]. 

GAROUTE prefers low-speed nodes as clusterheads. Fig. 8 shows how the parameters 

for a variant of GAROUTE, GAROUTE-V, vary with the mobility percentage. We note that 

the value of SCHS is adjusted so that ME X SME is a hard upper bound for   CHSpeed X 

SCHS with 100% mobility. We note that if speed minimization out-weighs transfer energy 

minimization, it increases the total energy consumption of GAROUTE at the end of 

simulation. The residual energy of sensor nodes after 200 s of simulation for a network with 

25% and 75% mobile nodes is shown in Fig. 9 and Fig. 10 respectively. The nodes follow a 

random-waypoint mobility model [34]. In Fig. 9, the large proportion of stationary nodes 

helps to rotate the role of clusterhead well. due to which the residual energy is evenly 

distributed across all nodes. In Fig. 10, on the other hand, energy of the smaller proportion of 

stationary nodes regularly preferred as clusterheads is drained faster. Therefore, a large 

variation in residual energy is observed. Assuming that a certain percentage of gait-node 

associated subjects is stationary at any given point of time and that the stationary subjects 

keep changing over time, clusterheads would be rotated regularly if gait nodes participated in 

clustering using GAROUTE. 

 
Figure 7: Deployment area configuration for evaluation of GAROUTE  
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Figure 8: Variation of GAROUTE-V parameter values with mobility 

 

Figure 9: Residual Energy of nodes in GAROUTE-V with 25% mobility 
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Figure 10: Residual Energy of nodes in GAROUTE-V with 75% mobility 

4.2 Prototyping GAROUTE with RAPIDSNAP 

To illustrate the orchestration of gait nodes for clustering with GAROUTE, we prototype a 

subset of GAROUTE with RAPIDSNAP. In the prototype, we consider a three-node network 

where the node with ID 2 becomes the clusterhead for two nodes 1 and 3. The sink of Fig. 7 

is realized with stages 2 and 3 of RAPIDSNAP. The experimental setup for evaluation is 

realized with four TelosB nodes. One node connected to the gateway acts as the base-station, 

and three other nodes form a single cluster sensor network. All nodes operate at a common 

transmission power level at which they can hear each other. Although the nodes are stationary, 

we assign speed levels to them in order to illustrate their operation in a deployment scenario.  

The clustering operations are captured by the sequence diagram in Fig. 11. Commands 

StartGAROUTE, SetGAROUTEClusterhead and event NodeInfo are defined at all stages of 

RAPIDSNAP. The parameters for a command or event in each message are indicated in 

brackets. The RAPIDSNAP user application and gateway run on a laptop termed as the 

centralStation. A Rapidapp at the user application is used to instrument the network. It 

initiates clustering by broadcasting StartGAROUTE. The nodes exchange NodeInfo event 

messages with each other to build their neighbourhood list and share their list with the 

Rapidapp in a NodeInfo event. The Rapidapp then chooses a clusterhead (node 3 in this case) 

and uses the SetGAROUTEClusterhead command to set it as the clusterhead for nodes 2 and 

4. Fig. 12 shows the final cluster configuration and the entire log of communication between 

the Rapidapp and the sensor nodes in the visualization component of the user application. 
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Figure 11: Communication between the GAROUTE Rapidapp and the sensor nodes  

4.3 Event Notification with Wisekar 

In addition to managing the sensor network behaviour, we show how Rapidapps act as 

middleware for bridging the communication between the network and Wisekar. We configure 

RAPIDSNAP to report fall events from gait nodes to Wisekar. For this, an accelerometer 

event packet is defined for communication between the three stages of RAPIDSNAP. 

Furthermore, we develop a Rapidapp to log all events in the Open Geo-spatial Consortium 

(OGC) defined standards-compliant format in Wisekar. As an example, whenever a subject 

falls, we need to log an event in Wisekar which captures the location of the event and also 

explicitly indicates that this is a fall event. For this, we define an XML fragment message 

sml_gaitsense.xml given in Listing 2 which is derived from two OpenGIS XML namespaces 

SensorML 1.0.1 and SWE 1.0.1. The SWE fields, enveloped in a swe:DataRecord tag, are 

defined in Listing 3. To configure Wisekar, we define an Active Set [1] with the XSD schema 

that corresponds to the XML Fragment in Listing 3. A node WISEKAR_NODE_ID is created 

in the active set for logging the gait events. This active set can now accept an event through 

the Rapidapp given in Listing 4. The incoming fall events from the Gaitsense network are 

packaged into GaitsenseSMLFrag.xml and logged in Wisekar through the httpMethod adaptor 

method.  
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Operations for all four HTTP verbs – GET, POST, PUT and DELETE – are supported by 

httpMethod. Just as the HTTP POST method is used to push an event into Wisekar, HTTP 

GET can be used by Rapidapps to pull information from Wisekar. Thus, Rapidapps can be 

used to achieve bidirectional communication between Wisekar and a node in the network. 

Wisekar, therefore, serves as a bridge between Rapidapps for development of smart M2M 

communication strategies in IoT applications. 

 

 

Figure 12: Final cluster configuration with node 3 as the clusterhead for nodes 2 and 4 after execution of the 

GAROUTE Rapidapp 

 

Listing 2: sml_gaitsense.xml – a SensorML based Gaitsense message format 

<sml:SensorML 

  xmlns:sml="http://www.opengis.net/sensorML/1.0.1" 

  xmlns:swe="http://www.opengis.net/swe/1.0.1">    

  <sml:member>    

    <sml:components><sml:ComponentList><sml:component name="gaitsense"> 

      <sml:characteristics> 

        <swe:DataRecord> 

          [Highlighted section of GaitsenseSMLFrag.xml] 

        </swe:DataRecord> 

      </sml:characteristics> 

    </sml:component></sml:ComponentList></sml:components> 

  </sml:member> 

</sml:SensorML> 
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Listing 3: GaitsenseSMLFrag.xml – XML Fragment structure for the Gaitsense Active Set in Wisekar 

<swe:SensorMLFragment 

  xmlns:swe="http://www.opengis.net/swe/1.0.1"> 

  <swe:DataRecord> 

    <swe:field name="hasFallen"> 

      <swe:Boolean> 

        <swe:value>true</swe:value> 

      </swe:Boolean> 

    </swe:field> 

    <swe:field name="xloc"> 

      <swe:Quantity> 

        <swe:value>100</swe:value> 

      </swe:Quantity> 

    </swe:field> 

    <swe:field name="yloc"> 

      <swe:Quantity> 

        <swe:value>200</swe:value> 

      </swe:Quantity>  

    </swe:field> 

  </swe:DataRecord> 

</swe:SensorMLFragment> 

 

Listing 4: Gaitsense Rapidapp used to log ‘fall’ gait events in Wisekar 

function handlePacket() { 

  var subjectid = arguments[0]; 

  var payloadType = arguments[1]; 

  var condition = arguments[3]; //arguments 2 and 4 not used. 

  var locX = arguments[5]; 

  var locY = arguments[6]; 

  var FALL = 1; //constant ‘1’ denotes a fall condition 

  var WISEKAR_NODE_ID = 33; //all Gaitsense events for ‘subjectid’ are  

                            //registered with Wisekar node ‘33’ 

  var CUSTOM_TYPE = 9; //Wisekar type ‘custom’ (= 9) allows a  

                       //user-defined event to be added 

 

  accelEvent = adaptor.getPayloadTypeFromString("Accelerometer"); 

  switch(payloadType) { 

    case accelEvent: 

      adaptor.print("Accelerometer event received"); 

 

      if (condition == FALL) { //the subject has fallen         

        var encodedString = adaptor.urlEncode([GaitsenseSMLFrag.xml with  
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    "swe" values for "xloc" and "yloc" set to locX and locY  

    respectively]);  

 

        statusString = adaptor.httpMethod("wisekar", "POST",  

         "http://wisekar.iitd.ernet.in/api/home/ 

         resource.php/resource/event?key=[API_KEY]& 

         nodeId="+WISEKAR_NODE_ID+"&typeId="+CUSTOM_TYPE+ 

         "&status="+subjectid+"&xmlFragment="+encodedString); 

      } 

    break; 

  } 

} 

 

5 Algorithms integrated with RAPIDSNAP 

Apart from GAROUTE, algorithms integrated with RAPIDSNAP include AODVjr [32] 

and PARTROUTE [31] for routing, and LORECOS [35] for localization. The software 

architecture of each sensor node is shown in Fig. 13. An Algorithm Abstraction Layer 

separates network level concerns, handled by the algorithms, from the application specific 

information termed as the Node Application Payload. LORECOS adds a set of localization 

extensions to AODVjr. PARTROUTE and GAROUTE are mobility aware routing and 

clustering protocols. Mobility awareness is derived from an external accelerometer integrated 

with the node. PARTROUTE uses mobility awareness of sensor nodes to achieve 

energy-efficient routing by reducing route-formation time. It creates traces over stationary 

nodes, and nodes on the traces are called representatives which send replies to a route-request 

source on behalf of the destination. To create routes, stationary nodes in PARTROUTE use 

S-ROUTE-REQUEST (S-RREQ) messages which also assist the trace-formation process 

[31]. M-ROUTE-REQUEST (M-RREQ) used by mobile nodes in PARTROUTE are 

comparable with the RREQ messages used by all nodes in AODVjr. 

For AODVjr and PARTROUTE, Fig. 14 compares the delay for an event to be reported 

at the user application – the Decision Support System (DSS) for the network – with a gait 

node upto 4 hops away (i.e. with 3 intermediate relay nodes). With PARTROUTE, the gait 

node is configured as a mobile node, and the relay nodes are configured as stationary nodes. 

Thus, the relay nodes use S-RREQ messages to form routes while the gait node uses 

M-RREQ. Fig. 14 captures the 95% CI for Mean Event Transfer Delay between the gait node 

and the DSS. The (stationary) relay nodes form a stable trace to the base-station connected to 

the DSS. Therefore, irrespective of the hop-distance between the gait node and the DSS, 

M-RREQ from the gait node is fielded by a representative on the trace at a single hop. In 

AODVjr, on the other hand, only RREQ messages are used by all nodes [32]. Therefore, the 

RREP for an RREQ from the gait node is always generated by the base-station. Thus, with 

AODVjr, time required for the delivery of the first event from the gait node increases with 

hop-distance. We note that both AODVjr and PARTROUTE use expanding ring search based 
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route-discovery to conserve communication energy. Expanding ring search results in the 

step-like delay pattern observed for AODVjr. 

 

 

Figure 13: Software Architecture of a Sensor Node 

 

 

 

Figure 14: Delay estimates for gait event to reach the user application (DSS) 
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Table 1: Comparison of script-based frameworks with frameworks having similar scripting roles grouped using 

the same colour 

Year Framework Framework Application Scripting Usage of 

  Purpose Area Ecosystem Scripting 

1997 Ns-2 [14] Simulation Networks oTcl, C++ Simulation 

     configuration 

2003 SensorWare [16] Deployment Sensor TinyTcl Algorithm on 

   Networks  sensor node 

2004 VisualSense [15] Simulation Sensor Python, Algorithm on 

   Networks Java sensor node 

2004 Maté VM [17] Deployment Sensor TinyScript, Algorithm on 

   Networks Mottle sensor node 

2005 Rappit [20] Deployment Embedded Python User (Console) 

   Systems  Interface 

2006 SCript [19] Deployment Sensor SCript Algorithm on 

   Networks  sensor node 

2006 Tapper [18] Deployment Sensor Tapper Algorithm on 

   Networks commands sensor node 

2009 PhoneGap [21] Deployment Mobile JavaScript, Phone app. 

   Platforms Platform OS development 

2011 HomeWeb [36] Deployment Home 

Sensor 

JavaScript, Browser 

   Networks Java (GWT) Interface 

2012 RAPIDSNAP Deployment Sensor JavaScript, User (GUI) 

   Networks C++ Interface 

 

6 Comparison of RAPIDSNAP with Other Script-based Systems for Sensor Networks 

To summarize, we compare the characteristics of script-based systems motivating the 

development of RAPIDSNAP in Table 1. The frameworks are loosely classified into user-side 

scripting frameworks, sensor-node level scripting systems, simulation systems, and mobile 

application frameworks shown in blue, green, gray, and yellow respectively. Python has 

emerged as strong scripting platform for both simulation and deployment frameworks. 

JavaScript, the mainstay of client-side scripting on the web, has captured a major share of the 

mobile space with frameworks like PhoneGap. Development in Google Web Toolkit (GWT) 

happens completely in Java, and the client-specific Java code is compiled into JavaScript for 

execution on the browser. Homeweb is a GWT based sensor network application. 

RAPIDSNAP extends the scope of JavaScript to the development of rich native sensor 

network client applications. 
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7 Conclusion 

A scriptable framework—RAPIDSNAP—for developing sensor network applications has 

been presented and its integration with an IoT repository Wisekar is discussed. The impact of 

the integrated system is presented in the context of a health application—Gaitsense. The 

RAPIDSNAP architecture is generic enough to encompass large and heterogeneous sensor 

networks deployments. We are working to integrate it with other systems like multimedia 

networks to further widen its application scope. We hope RAPIDSNAP and Wisekar evolve 

as a joint framework to address the potential challenges in Internet of Things. 
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