
 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 37

Scriptable Sensor Network Applications for Rapid

Development of Internet of Things

Sanat Sarangi and Subrat Kar

Bharti School of Telecommunication Technology and Management,

Indian Institute of Technology Delhi, Hauz Khas,

New Delhi - 110016, India

E-mail: sanat.sarangi@ieee.org and subrat@ee.iitd.ac.in

Received: December 15, 2013 Accepted: March 9, 2014 Published: April 30, 2014

DOI: 10.5296/npa.v6i1.4763 URL: http://dx.doi.org/10.5296/npa.v6i1.4763

Abstract

Internet of Things (IoT) refers to the paradigm of having sensor-enabled devices represented

on a global inter-connected web. A sensor network is a customized network of sensor nodes

deployed for a specific objective. Due to the variety of application areas, objectives and

end-user requirements of sensor networks can differ widely between deployments. IoT, on the

other hand, envisions a homogeneous presentation of information from sensor nodes for

mining and analysis. It promises support for machine-to-machine (M2M) communication

between sensor nodes. To tackle such conflicting requirements, we present RAPIDSNAP—a

scriptable application framework for rapid deployment of sensor networks—which acts as a

smart middleware to adapt sensor networks for IoT. RAPIDSNAP provides script-based

extensions to facilitate development of customized sensor network applications while

providing bridge-interfaces for integrating them with IoT repositories such as Wisekar. We

illustrate the impact of RAPIDSNAP and Wisekar by using them to propose extensions to a

sensor network based health application—Gaitsense. We conclude by comparing

RAPIDSNAP with other frameworks.

Keywords: Internet of Things, sensor network, application framework, scriptable application,

RAPIDSNAP, Rapidapp, JavaScript, Gaitsense, Wisekar

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 38

1. Introduction

Application development and deployment is more challenging for resource-constrained

sensor networks than it is for legacy telecommunication networks. User applications for

sensor networks have to be able to seamlessly adapt to the changing deployment conditions,

sensing requirements, and instrumentation capabilities. At the same time, information from

heterogeneous sensor networks has to be assimilated into a single standardized system to

facilitate rich data analytics. The paradigm of creating an information-web of sensor-enabled

devices, which naturally includes interconnecting multiple sensor networks, has been

termed—Internet of Things (IoT). Characteristic attributes of IoT include having a virtual

identifier for each “thing” (here, a sensor node) on the Internet and providing support for

machine-to-machine (M2M) interaction between things. Due to the heterogeneous

deployment characteristics and objectives of sensor networks, development of a unified

framework that seamlessly achieves the goals of IoT is non-trivial.

We have developed a flexible IoT repository called Wisekar [1], hosted at

http://wisekar.iitd.ac.in, for structured archival and exchange of sensor events. Wisekar

provides an API through which events can be streamed over the Web into datasets called

Active Sets where each Active Set can store information in an application-specific standard,

such as SensorML [2] or EEML [3]. Wisekar allows information represented in multiple

standards to co-exist. The configuration of a Wisekar Active Set can be tailored to the

requirements of a given sensor network deployment, where each physical node corresponds

to a unique virtual node defined in the Active Set.

In order to rapidly deploy customized sensor network applications, we have designed and

implemented a framework called RAPIDSNAP [4]. RAPIDSNAP provides support for

development of deployment-specific extensions called Rapidapps that act as

communication-bridges between a sensor network deployment and Wisekar. We extend our

discussion on protocols and algorithms associated with RAPIDSNAP, and illustrate how

RAPIDSNAP and Wisekar are jointly used for IoT applications.

Gaitsense [5] is a sensor network based health application developed by us. It consists of

a network of accelerometer-enabled sensor nodes called gait nodes mounted on mobile

subjects for activity monitoring and fall detection. A gait node generates an event when the

subject associated with it falls or changes its posture, for example, from standing to walking.

The event travels through the relay (sensor) nodes to a central station where an action is

initiated such as the generation of an email to call for emergency services. We note that

notifying fall events can help prevent fatalities in the elderly. We extend the capabilities of

Gaitsense by proposing novel extensions to it with the help of RAPIDSNAP and Wisekar.

Specifically, we illustrate how Wisekar harvests information from a RAPIDSNAP

deployment into its structured archival system. We also discuss how RAPIDSNAP is

configured to use Wisekar for tasking sensor networks, to achieve M2M communication –

one of the end-objectives of IoT.

The rest of the paper has six sections. Section 2 gives an overview of related work

motivating the development of RAPIDSNAP. It discusses the advantages of an integrated

RAPIDSNAP and Wisekar system over other frameworks, for IoT applications. Section 3

presents the RAPIDSNAP architecture and protocols in detail. Furthermore, ways to extend a

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 39

RAPIDSNAP network for heterogeneous deployments and role of Wisekar in achieving

M2M communication between multiple RAPIDSNAP deployments are discussed.

Customization of RAPIDSNAP and Wisekar for Gaitsense is presented in Section 4.

Rapidapps are developed to realize the implementation of a clustering algorithm for

Gaitsense and to selectively log Gaitsense events at Wisekar. Section 5 discusses other

algorithms integrated with RAPIDSNAP. A comparison of RAPIDSNAP with other

script-based frameworks is presented in Section 6. Finally, we conclude by discussing the

impact of the proposed framework and highlighting its future scope in Section 7.

2. Background

Code generation frameworks [6, 7] for sensor networks and ‘Service oriented sensor and

actuator networks’ (SOSANETs) [8] have been proposed. Argos [9] is an extensible

middleware container into which hot-plug Java services are added or removed to meet

deployment requirements. Agilla [10] middleware offers a flexible platform for sensor nodes

which allows deployment specific mobile agents to be injected into the network. To simplify

programming, sdlib [11] offers a library wrapper around NesC (in TinyOS [12]) with

get()/give() interfaces. jWebDust [13] offers an n-tier sensor-network application architecture.

The combination of a scripting language and a strongly typed language has been used with

simulation frameworks, such as discrete event simulators ns-2 (oTcl, C++) [14] and

VisualSense (Python, Java) [15]. In SensorWare, nodes execute TinyTcl scripts over an

RTOS [16]. Maté is a virtual machine on TinyOS that executes TinyScript and Mottle

scripts [17]. Tapper [18], used with the Rappit deployment tool, and SCript [19] allow scripts

to run on sensor nodes.

Information from sensor nodes terminates at a central station called a gateway. The

gateway of a sensor network is a useful place to deploy algorithms for customized interaction

with the network. Using a scripting (interpreted) language for developing such algorithms can

be used to switch the algorithm(s) (and therefore, the network objective) in a live scenario

without disturbing any other component of the deployment. Few frameworks provide such

flexibility which allows effortless reconfiguration of a sensor network in action. Rappit is an

embedded system application deployment tool that generates code for embedded systems

(from sensor nodes to fast Ethernet) and has a user-side script interface in Python [20]. The

need for customizable application frameworks for sensor networks has been highlighted in [8,

13].

Cross-platform script-based frameworks such as PhoneGap [21] have emerged.

PhoneGap allows native applications to be written in HTML and CSS with phone hardware

access support available through JavaScript. Like heterogeneous mobile platforms, the sensor

network ecosystem is fragmented by numerous sensors, algorithms for different objectives,

and multiple operating systems. RAPIDSNAP tries to standardize and implement multiple

algorithms in a single integrated framework with support for deployment specific

customization in JavaScript. PhoneGap facilitates seamless interaction between JavaScript

and phone sensors whereas RAPIDSNAP achieves this between JavaScript and sensors in the

network.

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 40

Figure 1: RAPIDSNAP Architecture

SPINE [22-24] is a deployment framework for signal-processing applications in Body

Sensor Networks which provides a Java API for writing user applications. In contrast, the

interpreted JavaScript-based Rapidapps used for developing RAPIDSNAP user applications

allow their behaviour to be changed or updated at run-time. Furthermore, SPINE provides for

one-hop communication between sensor nodes and the user application on a central

Controller whereas RAPIDSNAP supports multihop communication through the integrated

routing algorithms – AODVjr and PARTROUTE.

We note that SPINE2 [25] improves SPINE by adding support for node-platforms other

than TinyOS and improving the software abstraction on the nodes for developers’

convenience. A Java-based Building Management framework (BMF) has been proposed in

[26] where OSGi plugins are used to extend the framework. Although the plugins in BMF are

hot-swappable, development of a framework-extension with JavaScript in RAPIDSNAP is

typically faster as recompilation of the extension during development or evaluation is not

required. Also, JavaScript allows a large pool of web-developers to write sensor network

applications. Integration of RAPIDSNAP with Wisekar vastly expands the application scope

of RAPIDSNAP as a key component of pervasive IoT systems.

3. RAPIDSNAP Architecture

The RAPIDSNAP architecture has three stages as shown in Fig. 1. Stage 1 typically

consists of a mesh of sensor nodes communicating with a designated node wired to the

gateway called the base-station. The wired link is a serial interface in our implementation of

RAPIDSNAP. We have implemented routing and localization algorithms on sensor nodes in

Stage 1 with TinyOS 2.x [12] on TelosB nodes. The network protocol format defined by us in

Section 3.1 is used by the algorithms. The protocol is independent of the underlying

sensor-node hardware and operating system. Therefore, it can be used with other nodes and

operating systems or a combination of them.

The gateway in Stage 2 acts as an interface between the user application on the legacy IP

network (LAN, WAN) and other event sources, on an IP network for example. Every

command from an application to the sensor network or sub-packet from the network, such as

an event or a command response, to the application is logged in the DBMS and, in the

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 41

process, tagged with a unique packet ID by the gateway. The algorithms realized with

RAPIDSNAP do not require the network to be time-synchronized. In the absence of a

reference network clock, the gateway acts as a global clock and timestamps each packet it

receives.

The C++ based User Application in Stage 3 has two subsystems—the User Subsystem and

the Core Subsystem. The core subsystem in the user application abstracts the user subsystem

from the details of communication with the sensor network, legacy networks and the DBMS.

For a given sensor network deployment, the user subsystem has the customized control and

visualization components for the user. Customization is achieved with JavaScript based

scripts called Rapidapps as shown in Fig. 1. Multiple Rapidapps, where each Rapidapp may

implement a different algorithm, can be loaded into the user application and executed on the

fly.

3.1 Communication Protocol for Sensor Nodes

In Stage 1, RAPIDSNAP standardizes the network layer of sensor nodes and the layers

above it. We review the standards developed for packet formats in distributed systems to lay

the groundwork for discussing inter-node communication with RAPIDSNAP. As sensor

nodes are memory and energy constrained, energy spent in transmission and reception of

packets plays a key role in determining the life of the network.

3.1.1 Background

There are three popular machine-to-machine (M2M) encoding formats—XML, JSON and

Binary. An XML message contains both the data and the meta-data describing it. The

self-descriptive nature of XML makes it platform independent. However, an XML parser is

required for formatting and interpreting verbose XML packets, which is an overhead on

memory and communication energy. Thus, the suitability of XML needs to be evaluated

keeping in view the capability of sensor nodes and deployment requirements. Simple Object

Access Protocol (SOAP) is an XML based standard for development of web services. An

application consuming a web-service uses a SOAP client library to convert remote procedure

calls into XML messages sent to the server.

Figure 2: Sensor Network Packet Formats

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 42

Figure 3: Mapping of DATA packet sub-packets to DBMS tables

XML has a clear advantage with web services since the client and the server are not

energy-constrained, and XML allows structured messages to be exchanged over the Internet.

JavaScript Object Notation (JSON) is popular textual data-interchange format derived from

JavaScript that has a relatively compact notation and therefore lower communication

overheads when compared to XML [27]. XML is considered to be a more suitable

document-interchange format. JSON is popular with RESTful web-services as conformation

to XML is not essential with REST unlike SOAP. JSON-RPC is a remote procedure call

mechanism with JSON as the underlying message exchange format [28]. However, even

JSON is less energy-efficient than a packed binary-encoded message where the

communicating entities are aware of the message format. Java RMI and CORBA are RPC

implementations where packed binary byte sequences are used. Both sender and the receiver

are aware of the message format and its decoding method since the message is not

self-descriptive.

RMI uses Java Object Serialization to flatten objects into a sequence of bytes and share

them between JVMs [29]. CORBA is a standard that uses similar marshalling and

unmarshalling operations at the sender and receiver [30]. RMI-IIOP allows RMI to

interoperate with CORBA.

3.1.2 Communication Protocol and DBMS Schema Considerations

Due to resource-constraints in nodes, we choose the energy efficiency of binary encoding

over flexibility of JSON or XML. The packed binary control and data formats used with

RAPIDSNAP are shown in Fig. 2. Control packets are used by the routing, localization,

clustering, and related distributed algorithms to optimally manage or support the network.

The Type field determines the fields in the Body and the length of the packet. Data packets

have a constant type—DATA which is followed by the Routing Fields segment that stores

information needed to transport the data packet through the network to the base-station or

vice-versa. Therefore, these fields are based on the routing protocol used. Since table-driven

routing algorithms integrated with RAPIDSNAP—PARTROUTE [31] and

AODVjr [32]—only require source, destination and the next-hop information in a packet, the

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 43

Routing Fields segment is short. For source-routing algorithms like DSR [33], the segment

could be much longer. The Payload segment contains measurements from sensors.

Payloads in data packets are divided into command, command response and event

sub-packets. Commands originate at the user application and terminate at a node in the sensor

network while events and command responses originate at a sensor node and terminate at the

user application. Command responses are generated only in response to received commands

whereas events are generated asynchronously. RAPIDSNAP maps each sub-packet (event,

command and command response) to one of a set of predefined formats. Storage optimization,

schema design and evolution happens with respect to these formats. For example, a short and

a long payload correspond to two different event formats which are mapped to database

tables 1 and 2 as shown in Fig. 3. For each event, a unique packet ID is generated by the

gateway. The event with the long payload is split across the two tables, where the packet ID

for this event is stored in both the tables. Packet ID in table 2 acts as a foreign key to packet

ID in table 1 which serves as the primary key.

3.2 Extending the Network with the RAPIDSNAP Gateway

Having the gateway in a separate stage allows RAPIDSNAP to address a variety of

configuration scenarios. Fig. 4 shows a series of sensor networks connected to a single user

application by cascading the gateways together. The IP link between the gateways could be

an Ethernet or a Wi-Fi link. Furthermore, Network 1 and Network 2, associated with

base-stations BS 1 and BS 2, need not be similar to each other in terms of their objectives or

the architecture of their constituent sensor nodes. Thus, the gateway allows RAPIDSNAP to

create large, hierarchical, distributed and heterogeneous sensor networks. From Fig. 1, we

note that one gateway becomes an event source for the other.

Figure 4: Extension of a RAPIDSNAP Network

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 44

3.3 Rapidapps for Customized Control and Protocol Translation

3.3.1 Customized Control

Javascript-based Rapidapp scripts allow RAPIDSNAP to address automated and

customized control requirements. Multiple Rapidapps can be used to simultaneously address

different target requirements. Each Rapidapp avails the core subsystem services through an

instance of an Adaptor class made available by the core-subsystem [4]. Listing 1 shows an

example Rapidapp where the function handlePacket() receives an event from the network and

extracts its payload type. Available to handlePacket() is adaptor, an instance of Adaptor,

which is used to obtain the numeric event type associated with string NodeInfo, stored in

nodeInfoEvent. If the payload type matches nodeInfoEvent, an acknowledgement for the

receipt of this event is printed. Adaptor provides methods to allow the context information of

handlePacket() to be preserved across multiple handlePacket() invocations.

Each user application may have multiple Rapidapps, each executing a different algorithm.

For example, there could be three Rapidapps 1, 2 and 3 as shown in Fig. 5 with the same

entry method handlePacket() where the implementation of handlePacket() is different for

each case. All Rapidapps receive (a) asynchronous events, commands and

command-responses from the gateway and (b) periodic events from internal timers in the user

application for the different algorithms they execute. Although commands for the sensor

network are generated by the user application, it is the gateway which assigns a packet ID to

the command and returns a copy of it to the Rapidapps for possible action.

3.3.2 Protocol Translation between Sensor Networks and IoT Repositories

Wisekar [1] offers a RESTful API interface for contribution of sensor events. We have

extended the RAPIDSNAP user application to allow Rapidapps to invoke RESTful

web-services. This enables multiple RAPIDSNAP installations at (perhaps) geographically

distributed locations to communicate with Wisekar as shown in Fig. 6. Nodes in different

RAPIDSNAP installations can use Wisekar to share information with each other simplifying

the realization of IoT. In Section 4, we use Gaitsense as a case-study to discuss this

integration mechanism.

Listing 1: Example of a Rapidapp

function handlePacket() {

// adaptor object and packet fields as arguments

// are passed implicitly to handlePacket

var payloadType = arguments[1];

var nodeInfoEvent = adaptor.getPayloadTypeFromString("NodeInfo");

// process NodeInfo Events

switch(payloadType) {

case nodeInfoEvent:

adaptor.print("NodeInfo event received");

}

}

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 45

Figure 5: Multiple Rapidapps in the RAPIDSNAP user application where each Rapidapp executes a different

algorithm

Figure 6: Protocol translation between RAPIDSNAP and Wisekar

4 Customizing RAPIDSNAP for a Health Application—Gaitsense

We use RAPIDSNAP and Wisekar to propose a set of extensions to the sensor network

based Gait Assessment System—Gaitsense—introduced in Section 1. We first show how a

Rapidapp is used to realize a clustering algorithm GAROUTE for energy-efficient routing of

gait-node events. Then, we present another Rapidapp which filters and conditionally logs

these events in Wisekar.

4.1 The GAROUTE Clustering Algorithm for Gaitsense

We have proposed a clustering algorithm GAROUTE [34] which uses mobility awareness of

sensor nodes, added with accelerometers, to achieve energy-efficient clustering. We present

the motivation for using GAROUTE with Gaitsense before presenting its integration with

RAPIDSNAP. GAROUTE uses genetic algorithms to optimize a linear combination of three

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 46

parameters of a sensor network with mobile nodes: Mean Communication Energy (ME),

Clusterhead Fraction (CHFrac) and Total Clusterhead Speed (CHSpeed). The parameters are

scaled by their respective factors SME, SCHF and SCHS. GAROUTE is simulated on a

50-node network shown in Fig. 7 with the sink (gateway) placed at (100, 100) [34].

GAROUTE prefers low-speed nodes as clusterheads. Fig. 8 shows how the parameters

for a variant of GAROUTE, GAROUTE-V, vary with the mobility percentage. We note that

the value of SCHS is adjusted so that ME X SME is a hard upper bound for CHSpeed X

SCHS with 100% mobility. We note that if speed minimization out-weighs transfer energy

minimization, it increases the total energy consumption of GAROUTE at the end of

simulation. The residual energy of sensor nodes after 200 s of simulation for a network with

25% and 75% mobile nodes is shown in Fig. 9 and Fig. 10 respectively. The nodes follow a

random-waypoint mobility model [34]. In Fig. 9, the large proportion of stationary nodes

helps to rotate the role of clusterhead well. due to which the residual energy is evenly

distributed across all nodes. In Fig. 10, on the other hand, energy of the smaller proportion of

stationary nodes regularly preferred as clusterheads is drained faster. Therefore, a large

variation in residual energy is observed. Assuming that a certain percentage of gait-node

associated subjects is stationary at any given point of time and that the stationary subjects

keep changing over time, clusterheads would be rotated regularly if gait nodes participated in

clustering using GAROUTE.

Figure 7: Deployment area configuration for evaluation of GAROUTE

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 47

Figure 8: Variation of GAROUTE-V parameter values with mobility

Figure 9: Residual Energy of nodes in GAROUTE-V with 25% mobility

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 48

Figure 10: Residual Energy of nodes in GAROUTE-V with 75% mobility

4.2 Prototyping GAROUTE with RAPIDSNAP

To illustrate the orchestration of gait nodes for clustering with GAROUTE, we prototype a

subset of GAROUTE with RAPIDSNAP. In the prototype, we consider a three-node network

where the node with ID 2 becomes the clusterhead for two nodes 1 and 3. The sink of Fig. 7

is realized with stages 2 and 3 of RAPIDSNAP. The experimental setup for evaluation is

realized with four TelosB nodes. One node connected to the gateway acts as the base-station,

and three other nodes form a single cluster sensor network. All nodes operate at a common

transmission power level at which they can hear each other. Although the nodes are stationary,

we assign speed levels to them in order to illustrate their operation in a deployment scenario.

The clustering operations are captured by the sequence diagram in Fig. 11. Commands

StartGAROUTE, SetGAROUTEClusterhead and event NodeInfo are defined at all stages of

RAPIDSNAP. The parameters for a command or event in each message are indicated in

brackets. The RAPIDSNAP user application and gateway run on a laptop termed as the

centralStation. A Rapidapp at the user application is used to instrument the network. It

initiates clustering by broadcasting StartGAROUTE. The nodes exchange NodeInfo event

messages with each other to build their neighbourhood list and share their list with the

Rapidapp in a NodeInfo event. The Rapidapp then chooses a clusterhead (node 3 in this case)

and uses the SetGAROUTEClusterhead command to set it as the clusterhead for nodes 2 and

4. Fig. 12 shows the final cluster configuration and the entire log of communication between

the Rapidapp and the sensor nodes in the visualization component of the user application.

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 49

Figure 11: Communication between the GAROUTE Rapidapp and the sensor nodes

4.3 Event Notification with Wisekar

In addition to managing the sensor network behaviour, we show how Rapidapps act as

middleware for bridging the communication between the network and Wisekar. We configure

RAPIDSNAP to report fall events from gait nodes to Wisekar. For this, an accelerometer

event packet is defined for communication between the three stages of RAPIDSNAP.

Furthermore, we develop a Rapidapp to log all events in the Open Geo-spatial Consortium

(OGC) defined standards-compliant format in Wisekar. As an example, whenever a subject

falls, we need to log an event in Wisekar which captures the location of the event and also

explicitly indicates that this is a fall event. For this, we define an XML fragment message

sml_gaitsense.xml given in Listing 2 which is derived from two OpenGIS XML namespaces

SensorML 1.0.1 and SWE 1.0.1. The SWE fields, enveloped in a swe:DataRecord tag, are

defined in Listing 3. To configure Wisekar, we define an Active Set [1] with the XSD schema

that corresponds to the XML Fragment in Listing 3. A node WISEKAR_NODE_ID is created

in the active set for logging the gait events. This active set can now accept an event through

the Rapidapp given in Listing 4. The incoming fall events from the Gaitsense network are

packaged into GaitsenseSMLFrag.xml and logged in Wisekar through the httpMethod adaptor

method.

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 50

Operations for all four HTTP verbs – GET, POST, PUT and DELETE – are supported by

httpMethod. Just as the HTTP POST method is used to push an event into Wisekar, HTTP

GET can be used by Rapidapps to pull information from Wisekar. Thus, Rapidapps can be

used to achieve bidirectional communication between Wisekar and a node in the network.

Wisekar, therefore, serves as a bridge between Rapidapps for development of smart M2M

communication strategies in IoT applications.

Figure 12: Final cluster configuration with node 3 as the clusterhead for nodes 2 and 4 after execution of the

GAROUTE Rapidapp

Listing 2: sml_gaitsense.xml – a SensorML based Gaitsense message format

<sml:SensorML

 xmlns:sml="http://www.opengis.net/sensorML/1.0.1"

 xmlns:swe="http://www.opengis.net/swe/1.0.1">

 <sml:member>

 <sml:components><sml:ComponentList><sml:component name="gaitsense">

 <sml:characteristics>

 <swe:DataRecord>

 [Highlighted section of GaitsenseSMLFrag.xml]

 </swe:DataRecord>

 </sml:characteristics>

 </sml:component></sml:ComponentList></sml:components>

 </sml:member>

</sml:SensorML>

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 51

Listing 3: GaitsenseSMLFrag.xml – XML Fragment structure for the Gaitsense Active Set in Wisekar

<swe:SensorMLFragment

 xmlns:swe="http://www.opengis.net/swe/1.0.1">

 <swe:DataRecord>

 <swe:field name="hasFallen">

 <swe:Boolean>

 <swe:value>true</swe:value>

 </swe:Boolean>

 </swe:field>

 <swe:field name="xloc">

 <swe:Quantity>

 <swe:value>100</swe:value>

 </swe:Quantity>

 </swe:field>

 <swe:field name="yloc">

 <swe:Quantity>

 <swe:value>200</swe:value>

 </swe:Quantity>

 </swe:field>

 </swe:DataRecord>

</swe:SensorMLFragment>

Listing 4: Gaitsense Rapidapp used to log ‘fall’ gait events in Wisekar

function handlePacket() {

 var subjectid = arguments[0];

 var payloadType = arguments[1];

 var condition = arguments[3]; //arguments 2 and 4 not used.

 var locX = arguments[5];

 var locY = arguments[6];

 var FALL = 1; //constant ‘1’ denotes a fall condition

 var WISEKAR_NODE_ID = 33; //all Gaitsense events for ‘subjectid’ are

 //registered with Wisekar node ‘33’

 var CUSTOM_TYPE = 9; //Wisekar type ‘custom’ (= 9) allows a

 //user-defined event to be added

 accelEvent = adaptor.getPayloadTypeFromString("Accelerometer");

 switch(payloadType) {

 case accelEvent:

 adaptor.print("Accelerometer event received");

 if (condition == FALL) { //the subject has fallen

 var encodedString = adaptor.urlEncode([GaitsenseSMLFrag.xml with

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 52

 "swe" values for "xloc" and "yloc" set to locX and locY

 respectively]);

 statusString = adaptor.httpMethod("wisekar", "POST",

 "http://wisekar.iitd.ernet.in/api/home/

 resource.php/resource/event?key=[API_KEY]&

 nodeId="+WISEKAR_NODE_ID+"&typeId="+CUSTOM_TYPE+

 "&status="+subjectid+"&xmlFragment="+encodedString);

 }

 break;

 }

}

5 Algorithms integrated with RAPIDSNAP

Apart from GAROUTE, algorithms integrated with RAPIDSNAP include AODVjr [32]

and PARTROUTE [31] for routing, and LORECOS [35] for localization. The software

architecture of each sensor node is shown in Fig. 13. An Algorithm Abstraction Layer

separates network level concerns, handled by the algorithms, from the application specific

information termed as the Node Application Payload. LORECOS adds a set of localization

extensions to AODVjr. PARTROUTE and GAROUTE are mobility aware routing and

clustering protocols. Mobility awareness is derived from an external accelerometer integrated

with the node. PARTROUTE uses mobility awareness of sensor nodes to achieve

energy-efficient routing by reducing route-formation time. It creates traces over stationary

nodes, and nodes on the traces are called representatives which send replies to a route-request

source on behalf of the destination. To create routes, stationary nodes in PARTROUTE use

S-ROUTE-REQUEST (S-RREQ) messages which also assist the trace-formation process

[31]. M-ROUTE-REQUEST (M-RREQ) used by mobile nodes in PARTROUTE are

comparable with the RREQ messages used by all nodes in AODVjr.

For AODVjr and PARTROUTE, Fig. 14 compares the delay for an event to be reported

at the user application – the Decision Support System (DSS) for the network – with a gait

node upto 4 hops away (i.e. with 3 intermediate relay nodes). With PARTROUTE, the gait

node is configured as a mobile node, and the relay nodes are configured as stationary nodes.

Thus, the relay nodes use S-RREQ messages to form routes while the gait node uses

M-RREQ. Fig. 14 captures the 95% CI for Mean Event Transfer Delay between the gait node

and the DSS. The (stationary) relay nodes form a stable trace to the base-station connected to

the DSS. Therefore, irrespective of the hop-distance between the gait node and the DSS,

M-RREQ from the gait node is fielded by a representative on the trace at a single hop. In

AODVjr, on the other hand, only RREQ messages are used by all nodes [32]. Therefore, the

RREP for an RREQ from the gait node is always generated by the base-station. Thus, with

AODVjr, time required for the delivery of the first event from the gait node increases with

hop-distance. We note that both AODVjr and PARTROUTE use expanding ring search based

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 53

route-discovery to conserve communication energy. Expanding ring search results in the

step-like delay pattern observed for AODVjr.

Figure 13: Software Architecture of a Sensor Node

Figure 14: Delay estimates for gait event to reach the user application (DSS)

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 54

Table 1: Comparison of script-based frameworks with frameworks having similar scripting roles grouped using

the same colour

Year Framework Framework Application Scripting Usage of

 Purpose Area Ecosystem Scripting

1997 Ns-2 [14] Simulation Networks oTcl, C++ Simulation

 configuration

2003 SensorWare [16] Deployment Sensor TinyTcl Algorithm on

 Networks sensor node

2004 VisualSense [15] Simulation Sensor Python, Algorithm on

 Networks Java sensor node

2004 Maté VM [17] Deployment Sensor TinyScript, Algorithm on

 Networks Mottle sensor node

2005 Rappit [20] Deployment Embedded Python User (Console)

 Systems Interface

2006 SCript [19] Deployment Sensor SCript Algorithm on

 Networks sensor node

2006 Tapper [18] Deployment Sensor Tapper Algorithm on

 Networks commands sensor node

2009 PhoneGap [21] Deployment Mobile JavaScript, Phone app.

 Platforms Platform OS development

2011 HomeWeb [36] Deployment Home

Sensor

JavaScript, Browser

 Networks Java (GWT) Interface

2012 RAPIDSNAP Deployment Sensor JavaScript, User (GUI)

 Networks C++ Interface

6 Comparison of RAPIDSNAP with Other Script-based Systems for Sensor Networks

To summarize, we compare the characteristics of script-based systems motivating the

development of RAPIDSNAP in Table 1. The frameworks are loosely classified into user-side

scripting frameworks, sensor-node level scripting systems, simulation systems, and mobile

application frameworks shown in blue, green, gray, and yellow respectively. Python has

emerged as strong scripting platform for both simulation and deployment frameworks.

JavaScript, the mainstay of client-side scripting on the web, has captured a major share of the

mobile space with frameworks like PhoneGap. Development in Google Web Toolkit (GWT)

happens completely in Java, and the client-specific Java code is compiled into JavaScript for

execution on the browser. Homeweb is a GWT based sensor network application.

RAPIDSNAP extends the scope of JavaScript to the development of rich native sensor

network client applications.

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 55

7 Conclusion

A scriptable framework—RAPIDSNAP—for developing sensor network applications has

been presented and its integration with an IoT repository Wisekar is discussed. The impact of

the integrated system is presented in the context of a health application—Gaitsense. The

RAPIDSNAP architecture is generic enough to encompass large and heterogeneous sensor

networks deployments. We are working to integrate it with other systems like multimedia

networks to further widen its application scope. We hope RAPIDSNAP and Wisekar evolve

as a joint framework to address the potential challenges in Internet of Things.

References

[1] Sarangi S. and Kar S., “Wireless sensor knowledge archive,” The First International

Conference on Electronics, Computing and Communication Technologies (CONECCT

2013), Bangalore, January 17-19, 2013, pp. 1-6.

http://dx.doi.org/10.1109/CONECCT.2013.6469315

[2] SensorML spec. Available at: http://www.opengeospatial.org/standards/sensorml/

[3] Extended Environments Markup Language (EEML). Available at: http://www.eeml.org/

[4] Sarangi S. and Kar S., “A scriptable rapid application deployment framework for sensor

networks,” International Conference on Advances in Computing, Communication and

Informatics (ICACCI 2013), 2013, pp. 1035–1040.

http://dx.doi.org/10.1109/ICACCI.2013.6637319

[5] Kar S., Sarangi S., and Bisht A., “Fall detection and activity monitoring with wireless

sensor networks,” Indian Journal of Medical Informatics, Vol.7, No.3, pp.128–139, 2013.

[6] Gummadi R., Gnawali O., and Govindan R., “Macro-programming wireless sensor

networks using Kairos,” Distributed Computing in Sensor Systems, pp. 126–140, 2005.

http://dx.doi.org/10.1007/11502593_12

[7] Mostafizur M., Mozumdar R. , Lavagno L. , and Vanzago L. , “Rapid application

development for wireless sensor networks,” Factory Automation, pp. 103–120, 2010.

http://dx.doi.org/10.5772/9514

[8] Rezgui A. and Eltoweissy M., “Service-oriented sensor–actuator networks: Promises,

challenges, and the road ahead,” Computer Communications, vol. 30, no. 13, pp.

2627–2648, 2007. http://dx.doi.org/10.1016/j.comcom.2007.05.036

[9] Munch-Ellingsen A., Eriksen D., and Andersen A., “Argos, an extensible personal

application server,” Middleware 2007, pp. 21–40, 2007.

http://dx.doi.org/10.1007/978-3-540-76778-7_2

[10] Fok C., Roman G., and Lu C., “Rapid development and flexible deployment of adaptive

wireless sensor network applications,” Twenty-fifth IEEE International Conference on

Distributed Computing Systems (ICDCS 2005), Columbus, Ohio, USA, 2005, pp.

653–662. http://dx.doi.org/10.1109/ICDCS.2005.63

[11] Chu D., Lin K., Linares A., Nguyen G., and Hellerstein J., “Sdlib: a sensor network data

and communications library for rapid and robust application development,” Fifth

International Conference on Information Processing in Sensor Networks (IPSN ’06),

Nashville, Tennessee, USA, 2006, pp. 432–440. http://dx.doi.org/10.1.1.110.6074

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 56

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture

directions for networked sensors,” Ninth International Conference on Architectural

support for programming languages and operating systems, ser. ASPLOS IX, New York,

NY, USA, 2000, pp. 93–104. http://dx.doi.org/10.1007/11502593_12

[13] Chatzigiannakis I., Mylonas G., and Nikoletseas S., “jWebDust: A java-based generic

application environment for wireless sensor networks,” Distributed Computing in Sensor

Systems, pp. 376–386, 2005. http://dx.doi.org /10.1007/11502593_29

[14] McCanne S. and Floyd S. , “ns network simulator.”

Available at: http://www.isi.edu/nsnam/ns/

[15] Baldwin P. , Kohli S. , Lee E. A., Liu X. , Zhao Y. , Ee C. C. T., Brooks C. H., Krishnan

N. V., Neuendorffer S. , Zhong C. , and Zhou R., “VisualSense: Visual modeling for

wireless and sensor network systems,” University of California, Berkeley, Technical

Report: UCB/ERL M05/25, 2005.

[16] Boulis A. , Han C. , and Srivastava M., “Design and implementation of a framework for

efficient and programmable sensor networks,” First International Conference on Mobile

Systems, Applications and Services, San Francisco, CA, USA, 2003, pp. 187–200.

http://dx.doi.org/10.1145/1066116.1066121

[17] Levis P., Gay D., and Culler D., Bridging the gap: Programming sensor networks with

application specific virtual machines, Computer Science Division, University of

California, Technical Report: UCB/CSD-04-1343, 2004.

[18] Xie Q., Liu J., and Chou P. H., “Tapper: a lightweight scripting engine for highly

constrained wireless sensor nodes,” Fifth International Conference on Information

Processing in Sensor Networks, ser. IPSN ’06. Nashville, Tennessee, USA: ACM, 2006,

pp. 342–349. http://dx.doi.org/10.1109/IPSN.2006.243846

[19] Dunkels A., “A low-overhead script language for tiny networked embedded systems,”

Swedish Institute of Computer Science, Technical Report: T2006:15, Sep. 2006.

[20] Chou P., Xie Q., and Hahn J., “Rappit: framework for synthesis of host-assisted scripting

engines for adaptive embedded systems,” Third IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05),

New York, 2005, pp. 315–320. http://dx.doi.org/1084834.1084912

[21] “Phonegap.” Available: http://phonegap.com/

[22] Gravina R., Guerrieri A., Fortino G., Bellifemine, F., Giannantonio, R. and Sgroi, M.

“Development of Body Sensor Network Applications using SPINE” IEEE International

Conference on Systems, Man and Cybernetics, Singapore, 2008, pp. 2810-2815.

 http://dx.doi.org/10.1109/ICSMC.2008.4811722

[23] Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A. and Sgroi, M.

“SPINE: A domain-specific framework for rapid prototyping of WBSN applications”

Software - Practice and Experience, Vol. 41, No. 3, pp. 237-265, 2011.

 http://dx.doi.org/10.1002/spe.998

[24] Fortino G., Giannantonio R., Gravina R., Kuryloski P. and Jafari R., "Enabling Effective

Programming and Flexible Management of Efficient Body Sensor Network

Applications". IEEE Transactions on Human-Machine Systems, Vol. 43, No. 1, pp.

115-133, 2013. http://dx.doi.org/10.1109/TSMCC.2012.2215852

 Network Protocols and Algorithms

ISSN 1943-3581

2014, Vol. 6, No. 1

www.macrothink.org/npa 57

[25] Fortino, G., Guerrieri, A., Bellifemine, F. and Giannantonio, R., “Platform-independent

development of collaborative Wireless Body Sensor Network applications: SPINE2,”

IEEE International Conference on Systems, Man and Cybernetics, San Antonio, USA,

2009, pp. 3144-3150. http://dx.doi.org/10.1109/ICSMC.2009.5346155

[26] Fortino, G., Guerrieri, A., Ohare, G.M.P. and Ruzzelli, A. “A flexible building

management framework based on wireless sensor and actuator networks,” Journal of

Network and Computer Applications, Vol. 35, No. 6, pp. 1934-1952, 2012.

http://dx.doi.org/10.1016/j.jnca.2012.07.016

[27] Nurseitov N., Paulson M., Reynolds R., and Izurieta C., “Comparison of JSON and

XML data interchange formats: A case study,” in ISCA Twenty-second International

Conference on Computer Applications in Industry and Engineering (CAINE’09), San

Francisco, CA, USA, 2009, pp. 157–62.

[28] “JSON-RPC.” Available at: http://json-rpc.org/

[29] Waldo J., “Remote procedure calls and java remote method invocation,” IEEE

Concurrency, Vol. 6, No. 3, pp. 5–7, Jul-Sep 1998.

http://dx.doi.org/10.1109/4434.708248

[30] Vinoski S., “CORBA: integrating diverse applications within distributed heterogeneous

environments,” IEEE Communication Magazine, Vol. 35, No. 2, pp. 46–55, Feb 1997.

http://dx.doi.org/10.1109/35.565655

[31] Sarangi S. and Kar S., “Mobility aware routing with partial route preservation in wireless

sensor networks,” Ubiquitous Computing and Communication Journal, Vol. 6, No. 2, pp.

848–856, 2011.

[32] Chakeres I. D., and Klein-Berndt L., “AODVjr, AODV simplified,” SIGMOBILE

Mobile Computer Communication Review, Vol. 6, No. 3, pp. 100–101, 2002.

[33] Johnson D. B. and Maltz D. A., “Dynamic source routing in ad hoc wireless networks,”

Mobile Computing, Vol. 353, pp. 153–181, 1996.

http://dx.doi.org /10.1007/978-0-585-29603-6_5

[34] Sarangi S. and Kar S., “Genetic algorithm based mobility aware clustering for energy

efficient routing in wireless sensor networks,” Seventeenth IEEE International

Conference on Networks (ICON), 2011, Singapore, Dec. 2011, pp. 1–6.

http://dx.doi.org/10.1109/ICON.2011.6168497

[35] Sarangi S. and Kar S., “Location estimation with reactive routing in resource constrained

sensor networks,” International Conference on Sensors and Related Networks

(SENNET’09), Vol. II, Vellore, India, Dec. 2009, pp. 563–567.

[36] A. Kamilaris, V. Trifa, and A. Pitsillides, “Homeweb: An application framework for

web-based smart homes,” Eighteenth International Conference on Telecommunication

(ICT 2011), Ayia Napa, Cyprus, 2011, pp. 134–139.

http://dx.doi.org/10.1109/CTS.2011.5898905

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

