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Abstract 

The concept of service oriented architecture has been extensively explored in software 

engineering, due to the fact that it produces architectures made up of several interconnected 

modules, easy to reuse when building new systems. This approach to design would be 

impossible without interconnection mechanisms such as REST (Representational State 

Transfer) services, which allow module communication while minimizing coupling. . 

However, this low coupling brings disadvantages, such as the lack of transparency, which 

makes it difficult to systematically create tests without knowledge of the inner working of a 

system. In this article, we present an automatic error detection system for REST services, 

based on a statistical analysis over responses produced at multiple service invocations. Thus, 

a service can be systematically tested without knowing its full specification. The method can 

find errors in REST services which could not be identified by means of traditional testing 

methods, and provides limited testing coverage for services whose response format is 

unknown. It can be also useful as a complement to other testing mechanisms.   
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1. Introduction  

Over the last years, the service-oriented architecture paradigm has spread widely thanks 

to the expansion of the Internet and Web technologies. Its main advantage relies on its ability 

to produce modular low-coupled designs, which allows efficient and systematic creation of 

distributed systems. 

In order to make possible these kind of architectures, services must provide 

interconnection interfaces, which allow to encapsulate them and ease their usage. There are 

many technologies to define such interfaces. Among them, REpresentional State Transfer 

(REST) services are becoming more and more popular thanks to their high scalability and 

interface uniformity, which allows a wider separation between services and consumers. 

Companies like Yahoo, Google or twitter define REST interfaces to access their services. 

They allow querying maps (Google Maps), pictures (Flickr) or mail. In this way, they allow 

third-party clients for their services to be developed, without their actual involvement.. 

That said, REST services have some limitations, which may complicate the development 

of services as well as their corresponding clients. The most significant of these limitations are: 

lack of transparency of service code and structure, uncertainty about the components invoked 

during the execution of a service, lack of control over the infrastructure, and costs of service 

invocation. Although there are mechanisms to formally define the interface of a service they 

are seldom used, and are often developed separately from the service code, which may lead to 

descriptions not synchronized with the services implementations. 

The lack of transparency turns the creation of a client into a manual process requiring 

knowledge about the internal operation of the service, which is not always available. As well 

as complicating the access of future clients to a service, the lack of transparency also 

complicates testing. Currently available testing systems for REST services are focused on the 

creation of user-made test cases to verify that the service works properly. For these test cases, 

the user must code the service call as well as the expected response. Normally, the lack of 

transparency of REST services means that the tests must be written by the service developer. 

This leads to not making systematic tests, but to only choose test scenarios that are prone to 

errors in the opinion of the developer. 

In this article, we propose a solution for automatic black-box testing of REST services. 

The proposed method can even provide partial testing coverage in scenarios where the 

complete specification is absent. It also complements other testing mechanisms when this 

information is available. The design is based in statistical analysis of the responses returned 

by the service when it is invoked, for which two levels are considered: syntactical (structure 

of responses) and semantic -their content. 

Although the statistical analysis of contents could have been performed over any media 

format, we decided to focus on the study of services providing responses in eXtensible 

Markup Language (XML), for the advantages it provides: the popularity of XML as a format, 

the fact that it imposes a strict structure and the availability of literature about how to infer 

this structure from sample documents. These advantages are not necessarily true for other 
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formats supported by REST (like JSON, for example), rendering XML the ideal candidate for 

our study. 

The article is structured as follows: Section II provides a complete view of REST 

services testing technologies as well as different existing techniques for inference of XML 

Schema Definition (XSD). Section III shows the architecture of the proposed solution. In 

section IV, we describe the experiments performed in order to validate our solution. Finally, 

section V includes the conclusions and future lines of work.  

  

2. Related work  

In this section, we provide an overview of the current state of art in systems and tools for 

testing of REST services. In addition, since the core of our solution is based on inferring the 

structure of XML files we summarize known tools and techniques for this kind of inference. 

2.1 REST services testing 

According to a recent study [1], research on service-oriented testing has experienced a 

great growth in recent years. However, work in this area has focused mainly on SOAP-based 

web services, with relatively few articles about testing of REST services. Despite this fact, 

there are several tools widely used for testing web services. 

SoapUI [2] is a multiplatform open-source testing tool for both web services and REST 

services. It supports functional, regression and load tests. It also provides security testing 

functionality and service simulation. Besides, it provides automatic generation of WADL 

documents to describe REST services, as well as automatic inference of XSDs from service 

responses. 

Similarly, TTR [3] is testing tool for REST services with support for both functional and 

non-functional tests. It consists of environment that can be extended through plug-ins, an 

XML-based test case specification language, and a test case composition method. TTR 

follows a black-box testing approach and it requires the tested services to be running in a 

controlled environment. 

REST Assured [4] is a domain-specific language for Java, developed to simplify the 

testing of REST-based services.. It eases the building of REST requests, and provides 

response validation and verification by means of JSON and XML interpretation tools. It also 

supports authentication, logs generation and object mapping. 

Besson [5] describes an environment for the testing of web services choreographies, 

which is compatible with REST. It provides a mechanism for the abstraction of 

choreographies as Java objects, and dynamic clients for web services, including a REST 

client based on REST Assured. It also supports message interception and service simulation. 

Reza [6] presents a software environment for the simulation of REST services in testing 

scenarios. For each simulated service, it allows the specification of interfaces and input 

parameters as XML documents. Simulated services verify the input parameters and generate 
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responses according to prerecorded data combinations, case-defined logics and data 

perturbation. 

Overall, existing REST testing solutions assume detailed knowledge about the tested 

services: input parameters, response format and expected response values. As the motivation 

of the present works comes from the need for black-box testing over services with unknown 

complete specifications and the shortening of the necessary effort to do it, we can conclude 

that none of the currently available systems addresses our requirements. 

2.2 Inference of XML Schemas 

As we mentioned above, one of the steps in our proposed testing method performs 

syntactical analysis of the XML responses of REST services. In order to achieve this, we 

must infer the structure of these XML documents, in the form of schemas. There are several 

recent studies dealing with the problem of inferencing schemas from XML documents. The 

first works in this area focused on the inference of a kind of schemas called Document Type 

Definition (DTD) [7]. However, the most popular format is currently the XML Schema 

Definition (XSD), which is much more expressive, but also more complex and difficult to 

infer. In this section, we define the requirements that an inference engine for a testing system 

must meet, we summarize the main inference methods found in the literature, and analyze the 

most relevant tools .  

The main feature we look for in an inference system for XML Schema is validability. 

Inferred schemas must be such that all input XML documents are valid against them. On the 

other hand, the system must be strict, so that inferred schemas only consider valid those 

documents whose structure is equal or as close as possible to the one of input documents. 

Other desirable features include correctness and universality: generated schemas must follow 

the specification of the chosen schema format and the system must be able to infer a schema 

from any valid XML document set. Lastly, in order to be able to use inference in the context 

of our testing system, it is essential that the system can infer schemas from a large corpus of 

input documents, that the inference process does not take an excessive amount of time, and 

that the system can be extended to perform statistical analysis over input documents and 

generated schemas. 

In this article we only consider inference of XSDs, as DTD lacks expressiveness to 

generate strict schemas. XSD inference requires obtaining regular expressions from element 

strings, taking into account not only the name of the elements but also the context of their 

use . The main XSD inference techniques, which we are using in the design of our solution 

are following. 

Bex [8] observes that previously existing XSD inference systems did not take into 

account the context of the XML elements, which lead to XSDs with the same structures and 

limited expressiveness as DTDs. The article defines the concept of k-locality, to refer to 

content models of elements that depend on up to k of their respective ancestors. Their 

proposed solution introduces a restriction that simplifies the inference: it uses regular 

expressions in which each element name only occurs once, the so called Singe Occurrence 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2014, Vol. 6, No. 2 

www.macrothink.org/npa 10 

Regular Expressions (SOREs), which can describe the majority of schemas found in practice. 

They also describe the iXSD algorithm, based on SOREs, and valid for any k-locality. iXSD 

uses a kind of finite state automatons called SOAs (Single Occurrence Automatons) as an 

intermediate step between the input XML and the SOREs and generates the schemas from 

those SOREs. Finally, it integrates a post-processing step to merge similar types on the 

obtained XSD. 

A later article by Bex [9] uses a more restrictive subset of the SOREs called Chain 

Regular Expressions (CHAREs), and introduces two new algorithms: one also to transform 

automatons into SOREs, and a second one that infer CHAREs directly without using 

automatons, which is more appropriate for scenarios with scarcity of input XML documents. 

In the same line, Nordmann [10] proposes enhancements to these algorithms and a new 

mechanism for type merging, which allow the inference of schemas including a previously 

unsupported syntactical element (the <all> element), as well as schemas with types associated 

with multiple label names.  

During the development of our work, we evaluated different inference tools, with 

different degrees of performance and maturity. We discuss them below. 

XML Schema Learner [11] is a PHP open-source tool that can infer XSDs and DTDs, 

based on [10]. It supports the majority of the XSD language characteristics and provides the 

strictest inference among the studied tools. However, it has some major bugs that can lead to 

inference errors.  

Trang [12] is a Java tool licensed under New BSD, which can infer schemas in multiple 

formats, including DTD and XSD, and supports the conversion of schemas to different 

schema formats. Its main drawbacks are the fact that it only considers a zero k-locality (its 

generated XSDs are equivalent to DTDs) and that it does not always follow the XSD 

specification correctly. 

Microsoft's .NET Framework provides a XSD inference API [13] and its Software 

Development Kit (SDK) includes a standalone tool built upon this API. The tool takes as 

input one XML document and, optionally, a preexisting XSD in which the input file will be 

integrated. It allows incremental processing of document groups, but also entails an 

information and accuracy loss compared to simultaneous processing. Our tests have revealed 

occasional inference errors, for example, when an element has the same name than one of its 

ancestors. 

In addition to the testing functions discussed in the previous section, SoapUI [2] provides 

XSD inference from REST services XML responses. Inferences have k-locality one and, 

as .NET does, it allows incremental inference. We also identified inference problems with 

unordered elements. SoapUI is the only tool we found which employs XML Schema 

inference to REST tests. 

In general, existing tools either have limited inference ability or produce significant 

inference errors in certain scenarios. It is also very difficult to add a statistics generation 

module into these systems. Because all of these reasons, we decided to develop our own 
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inference system, which we describe it in the following sections. 

3. System Architecture  

In this section, we describe the architecture of the proposed solution. We start by its main 

component: the XSD inferencer. 

3.1 XML Schema inference 

The XSD inferencer is the core component of our anomaly detection system. Its aim is to 

build an XSD schema against which the whole document corpus is valid, as well as to 

generate statistics about the schema and document contents, which will allow the system to 

detect anomalies within both the syntax of files and their semantic. Hence, we describe this 

module prior to explain the global architecture, as without its crucial work it would be 

difficult to understand the other components. 

As we mentioned previously, after studying the different approaches to infer a schema, 

we concluded that few existing tools take advantage of the expressive capacity of XSD in 

order to infer schemas from document sets. The most complete among the ones that do so is 

XML Schema Learner, designed by Kore Nordmann. For this reason, we chose to base the 

design of our inference solution on that tool, while introducing algorithm improvements as 

well as new functionality such as statistics generation. The inferencer is designed as a 

modular component, independent of the rest of the system. Figure 1 shows a sequence 

diagram of the interaction between the different modules during the inference process, 

including the values return by the modules at each step. The Main module is the coordinating 

component of the inferencer. Its role is to control the data flow between the different modules. 

The design of XML Schema Learner was based on a four step process, each one associated 

with a specific module: an Extractor, a Merger, a type Converter and the XSD generation 

module (labeled as Results in the figure). The Coordinator module presents four interfaces for 

these modules, supporting the choice between different implementations of each module. In 

addition, it contains the class definitions of the model which will be managed during all the 

process, such as the Schema class, which encapsulates the data structure required to infer the 

schema, and is modified in each step. 

 

Figure 1. Sequence diagram: inference of XSD. 
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The first step is the extraction of types, performed by the Extractor module. Its aim is to 

transform the input set of XML documents into an object structure simulating the structure of 

XSD types (including both simple and complex types), and capable of containing the 

information from all input documents. Our implementation processes all XML files one by 

one. After having analyzed the first file, a Schema object is created with the detected 

elements structure, including all the simple and complex types, attribute lists and its 

corresponding namespaces. 

Although the processing of simple types is relatively straightforward, complex types 

present more of a challenge. These types must contain their corresponding attribute list , a 

simple type describing the admissible text (if any) and a representation of the structure for 

their admissible . The structure of these complex types does not have to be static -for instance, 

some elements or attributes may exist in some documents but not in other. For this reason, we 

describe the structure by means of automatons, which can describe which children may or 

may not occur in a document, and their order. Complex types also define which attributes are 

related to an element, including the simple type of the attribute and whether it is required or 

optional. 

The element structure stored at the Schema object uses these complex types to define the 

sequence of elements. Subsequent files are used to refine already present elements, to create 

new ones if necessary and to update the structure of the document. The final result is a 

Schema object with a preliminary version of what will become the final XSD. This object 

contains a list of all the simple and complex types detected and a list of all the namespaces 

found within the documents, including all the prefixes to which they are mapped. 

An improvement of our implementation in comparison to XML Schema Learner is the 

detection of a wider range of simple types, as the previous tool tagged all types as xs:string. 

We can also determine when a simple type has an "enumeration" restriction associated, and 

provide proper support for multiple namespaces.. Finally, it should be noted that, at each 

analysis step, we extract information about how many times does an element occur and which 

values can it take, which is stored on an auxiliary Java objects structure within the Schema 

object. At the end of the process, we use this information to fill a report with the statistics 

extracted from the document corpus.  

The next step is to perform the type merging by means of the Merger module. The data 

provided by the Extractor module is composed by a set of interrelated Java objects, defining a 

preliminary XSD. For the Merger module, the goal is to analyze this schema and merge any 

types that are similar enough similar to be considered a single XSD type. This operation 

greatly reduces the size of the schema. The process is computationally complex, because it 

requires all the types to be compared. For simple types, it means that all the values lists must 

be compared. For complex types, all the structures of their automatons and attribute lists must 

be compared. We must take care to preserve the statistical data gathered during the previous 

phase, so that it is not lost or corrupted during the merge. 
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Then, we convert the structure of types into a set of regular expressions, from which the 

definitive XSD can be built. This is the task assigned to the Converter module, which is 

composed of two differentiated submodules. The first one creates the regular expressions, 

which can be achieved through different algorithms, such as those based on extraction of 

SOREs or those extracting CHAREs. Both types of regular expressions guarantee that the 

structure is unambiguous and free of cyclic dependencies. We generate SOREs by default, 

since they lead to more restrictive regular expressions. However, if the SORE generation fails 

or we have explicitly configured the tool for that purpose, the CHARE generation algorithm 

is used instead. By doing this, we ensure that the generated schema is as restricted as possible 

to the structure of the analyzed documents and we prevent documents with a similar but not 

valid structure to be valid against the generated schema.  

Regular expressions extracted by these algorithms usually include redundant or useless 

information. Because of this, the second submodule of the Converter is responsible for 

optimizing these regular expressions until they contain the minimum necessary information. 

Specifically, optimizers are used to remove empty elements, to reduce the produced 

nomenclature (specially, the concatenation of two multipliers) and even to reduce the length 

of some sequences. In figure 2, we can observe an example of automaton converted to regular 

expression by this method. 

 

Figure 2. conversion of automaton to regular expression. 

In the example above, the first step is to merge the B and C nodes to a new node BC, as 

B only has one outgoing edge, to C, and C only has one incoming, from B. Even more, as we 

can have an infinite loop of BC chains, the right expression would be BC+. Next, the 

algorithm would look at the F and G nodes. They both have a common target and a common 

source, so they can be converted to a (F|G) node. As E is a mandatory point with an outgoing 

edge to H, the node (F|G) may not exist, so it gets converted to (F|G)?. The same happens 

with the new node BC+, so it gets converted to (BC+)?. D has an edge to itself and we know 

it must occur at least once, so it gets converted to D+. Now that all nodes have been flattened, 

the converter can produces a regular expression by concatenating all nodes: 

0A(BC+)?D+E(F|G)?H1. In the last step, the optimizers remove the starting and ending 

nodes, 0 and 1, and convert the (BC+)? To (BC)* resulting in the expression shown in figure 

2. 

Finally, the Results module has the aim to generate the documents outputted by the tool. 

In particular, for each namespace found at the input documents a XSD schema is generated. A 
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separated statistical report is generated, where available data about each element is analyzed. 

For each unique element found along the document corpus, the tool calculates its number of 

appearances per analyzed document, as well as the distribution of values for that element, if 

appropriate. 

3.2 Global architecture 

Having explained the central part of the system and how it generates the statistics, we 

can proceed to describe our general architecture. We should recall that the purpose of the tool 

is to be able to perform black box testing of REST services, based on the statistical detection 

of anomalous elements. For this reason, the system is composed of three modules: one able to 

call a REST service and process the answers, the inferencer, which analyses the responses 

and calculates statistics for each element, and a reporting module that analyses the generated 

statistics  in order to detect those elements, both syntactic and semantic, that stand out. 

Figure 3 shows the global view of the system and the sequence of actions that are performed 

when running a scan of a REST service. 

 

Figure 3. Global system architecture  

For the first step, the user introduces a set of test data. This dataset is made up of a test 

URL and HTTP method for the tested service, and a set of parameters to adjust the request. 

The larger this dataset, the better the quality of the anomaly detection and inferred XSD will 

be. 

The input data reach the REST Client module, which reads the data and generates REST 

requests to the specified service. For each response received, it makes an XML document 

binding the response to the request parameters that generated it, storing them both in the 

system database. For temporary storage of the data, we used a XML-oriented document 

database called BaseX [14], which allows us to perform queries over the corpus of documents 

without having to adapt to a SQL schema. 

When all requests have been completed and all results are stored in the database, the 
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REST Client proceeds to tell the inferencer the database location for the corpus of documents 

to analyse. The inferencer operates as explained in the previous section,. collecting all the 

input documents from the database and stores the results in it. 

Finally, the Report Generator module starts the search for abnormalities on the statistical 

results collected by the inferrer. To this end, it uses a set of rules that apply at syntactic and 

semantic level. At syntactic level, it traverses the XSD schema to detect the types that have a 

number of the apparitions lower than the other elements. For example, if after analysing 20 

documents we find a type that has appeared only twice, it could be a mistake, particularly if it 

is a type that exists in another part of the schema- this would indicate a human error at 

document creation.  

At the semantic level, the discovery of anomalies follows more complex rules. Those 

rules compare the statistical values of each element, such as variance, mode, or the maximum 

and minimum number of occurrences per file. Once we have these values, we analyze them, 

looking for outliers, discrepancies in values between sibling elements, duplicate values and 

other odd behaviour. 

Once the anomaly analysis is complete, a report is written listing all the detected 

anomalies and their relationship to input parameters. This is done by means of the 

XQuery-based query functionality provided by BaseX (XQuery is a specific language to 

query over XML documents). The module contains the XML path that generated the anomaly 

and performs a query over all the documents stored in the database. Once the files that 

generated the anomaly are identified, it reads the information entered by the REST Client 

module that bounds these files with input parameters to reflect this relationship in the final 

report. When all anomalies have been processed, it returns to the user the generated report 

and XSDs. The reason for returning the XSD schema is not merely informative, as the user 

could use them to create a REST client that is able to validate and interpret all responses of 

the server, if desired. 

 

4. Experimental results  

To check the validity of the proposed solution, two types of tests have been performed: 

inference tests and system tests. Inference tests focused on the operation of the schema 

inference, the central part of our system. To do this, we compared the results obtained by our 

inference engine with two tools, Trang and SoapUI, using XML responses from REST 

services. System tests have focused on testing the validation of the entire system, using it to 

identify anomalies in REST services. 

4.1 Scenario 

The validation scenario consists of a set of black-box tests over a REST service whose 

internal workings are unknown, conducted with our testing tool. We repeated this scenario 

with two different REST services: a public service in production status, and a REST service 

of our own consisting on a configuration recovery system, in development status. The first 
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provides an example of a real system that can be found in the market, in which it should be 

relatively hard to find errors, while the latter still contains enough errors to demonstrate the 

capabilities of the testing system. In both cases,  we have performed tests with 50 different 

request configurations, resulting in as many unique response XML documents. 

4.1.1 Google Places 

The first REST service under test has been Google Places [15], a public service provided 

by Google.  For this service, several queries were made to try to find different types of 

premises at random locations along the Iberian Peninsula. Each query takes as input 

parameters a location, a search radius, a language, and the type of premises, with randomly 

selected values within the allowed ranges. 

4.1.2 Configuration recovery service 

In the second scenario we chose a REST service of configuration recovery that we are 

currently developing. The service allows you to query the settings of various distributed 

application servers in a private cloud. The only input parameter required by the service is the 

address of the server whose configuration you want to query. 

4.2 XML Validation of inference 

Validation tests of inference are intended to evaluate the ability of our inference engine to 

generate appropriate schemas from sets of XML documents. As additional quality metrics, we 

chose the minimum inference size, which is defined as the minimum number of input 

documents required to obtain a schema that can be validate with all documents of the same 

type. 

Validation is performed on a test set composed of XML documents with a common 

structure obtained from responses to a REST service. From this set, we obtain an analysis 

subset, from which we infer XSDs. The process involves a series of iterations, each one 

consisting of the following steps: 

• Add a random document from the test set to the analysis set. 

• Infer a new schema from the analysis set. 

• Try to validate the test set against the schema obtained. 

Iterations continue until no more schemas can be added to the analysis test (in which case 

we consider that the inference has failed), or we find a schema that can be validated by the 

whole test set. In case of successful inference, the inference size value equals the size of the 

set of analysis after the last iteration. 

The validation of inference has been conducted on the Google Places and configuration 

recovery service. In each case, the process was repeated with our inference engine and the 

tools Trang and SoapUI, using the same random sequences of documents and comparing 

results. The validation results are summarized in Table 1. 
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Table 1. Inference validation results 

Google Places 

 Trang SoapUI Our tool 

Valid schema generation Yes Yes Yes 

Min. inference size 11 11 19 

Identify all element 

relations 
No Yes 

Yes 

Identify enumerations No No No 

Configuration Recovery Service 

 Trang SoapUI Our tool 

Valid schema generation No No Yes 

Min. inference size - - 14 

 

4.2.1 Google Places 

In this scenario all inference tools are able to get XSD schema validable for the entire 

test set. In addition, for the three tools, the obtained schemas describe adequately the 

structure of documents, with slight differences: Trang does not collect relations between 

certain elements that always appear together, and only our inference engine properly 

identifies enumeration restrictions. 

Regarding the minimum inference size, Trang and SoapUI generate a valid schema for 

the entire test set with the first 11 documents, while our engine requires 19 documents. That 

is, our tool requires a larget input set in order to produce any output, at the maximum quality 

settings. That said, the flexible configuration capabilities of our tool also allow us to generate 

schemas at lower quality settings, with similar results to those of other tools. . 

4.2.2 Configuration recovery service 

With our REST service for querying configurations, we observe that it is impossible to 

obtain any schema using SoapUI. This is because the input XML documents have elements 

whose children appear in variable order, something that is not supported by the inference 

algorithm used by this tool. Thus, if the set of analysis includes for a same parent element, a 

sequence of child elements A and B, and then a sequence of child elements B and A, the 

program crashes without actually generating a schema. This is a kind of error that we 

observed in other inference systems under study, such as NET, and likely due to some 

implementation flaw and a lack of testing for these scenarios.In these cases, an incorrect 

schema or no schema is generated. 

On the other side, Trang generates schemas, but they cannot be validated by the test set. 

The reason is that the structure of the documents includes multiple  elements with the 

"configuration" tag, which Trang is unable to distinguish and aggregates as a single type, 

resulting in incorrect patterns. This is due to the fact that Trang does not consider the context 

of an element’s ancestors in its analysis. 
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Our inference engine, however, properly recognizes elements of variable order and the 

types with same tag but different context, generating schemas that validate the entire test set. 

To do this, an inference size value of 14 is necessary. 

4.3 Anomaly analysis 

These tests are aimed at validating the ability of the system to detect anomalies from 

statistical data obtained from service responses. To this end, we used our statistical report tool 

to summarize the test set of 50 response XML documents, and analyzed the report in search 

for potential anomalies. We then performed a manual evaluation of each detected anomaly to 

determine its origin, and label it as a service error or a false positive. 

We used the following input data for the anomaly detection procedure: 

 For each XML element, attribute and complex type in the inferred schema, we 

generate an occurrence table, with the number of occurrences of that element, 

attribute or type in each XML document of the test dataset. 

 For each XML element and attribute in the inferred schema that can have a value, 

we generate a value table with the distribution of values in each XML document 

of the test dataset. 

 

For each occurrence table we apply the following procedure: 

 If the table has the same number of occurrences for all XML documents in the 
test dataset, we discard it, since it holds no useful distribution for our anomaly 
analysis. 

 Otherwise, we use the table data to fit the probability distribution of the number 
of occurrences for its associated element, attribute or complex type.  

 Using the fitted probability distribution, we label any observed value with a 
probability below a certain threshold as an anomaly. 

We proceed in a similar manner with each value table: 

 If the table has the same value distribution for all XML documents in the test 
dataset, we discard it, since it holds no useful distribution for our anomaly 
analysis. 

 Otherwise, we use the table to fit the probability distribution of the number of 
occurrences of each value, for its corresponding XML element or attribute.  

 Using the fitted probability distribution, we label any observed value with a 
probability below a certain threshold as an anomaly. 

For the probability distribution fitting steps, we modeled the variables as having normal 

distributions with their calculated mean and standard deviation. For anomaly labeling we 

used a threshold of 0.05,  

Using this procedure, we found no anomalies in the Google places test set. However, in 

our configuration recovery service, we were able to detect several anomalies, which a manual 

analysis identified as corresponding to a variety of service errors, including duplicate 

elements, misplaced elements and misnamed elements. Each error type can be identified by 
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different symptoms. For example, when the occurrences of a given element remains constant 

in most test documents, but have higher values for a small minority of documents, it is often a 

symptom of responses with duplicate elements. On the other hand, a misplaced element will 

typically appear as two different anomalies: a lower than usual occurrence for a given 

element in a minority of documents, along with another element with the same name but 

different path appearing only in that minority of documents. A misnamed element is similar 

to a misplaced element, involving an incorrect element name instead of an incorrect element 

path. Finally, some of the observed anomalies are actually false positives, corresponding to 

service behavior that is unusual, but correct. 

As a result of the anomaly detection process, we identified:  

 Three duplicate elements 

 Five misplaced elements 

 One misnamed element 

 Seven false positives 

In this scenario, our method detects all errors related with the structure of the response XML, with 56% 

precision.  

 

5. Conclusion and Future work 

Our solution is able to detect anomalies that other test systems are unable to detect; it 

also has the advantage that you need not specify the expected response for each request. 

Furthermore, we obtain more consistent and more specific XSDs than other commercial 

inference tools available, which will allow automatically generating the WADL specification 

service or even automatically creating classes from a specific customer for that service, which 

significantly reduce the development time. We also have found that the tool is able to detect 

anomalies that are not errors but may determine special cases, offering the possibility to use 

the system to identify them. For example, in the case study on Google Places, it might be 

interesting to find those places where there are no local around. This leads us to think that 

other functionalities for the tool could be explored. 

However, this system has some limitations. Because the analysis is statistical, it cannot 

be used to perform simple tests, with few requests to the service, nor for errors that do not 

stand out from the normal operation, that is to say, errors always happen or in an equal 

proportion to other errors. One possible solution to this problem would be the possibility of 

including as input the XSD expected and comparing it with the obtained one to detect 

anomalous elements. 

In order to make this solution possible, it should be ensured that the inferred schema is as 

close as possible to reality. Although our inferencer provides schemas which are well defined 

and tied to the input documents, it could be improved. For example, the algorithm calculates 

the distance between XML elements used to compute the elements belonging to a complex 

type may be replaced with new algorithms such as the pq-gram distance calculation [16]. 
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Another way of evolution would be to study how to apply the same processing to 

responses in JSON or other formats. Both the solution to this drawback and the previous ones 

represent ways of research that we would like to approach in the future, now that we have 

determined the feasibility of the solution, in order to generalize the use of the tool. 

The anomaly detector module and its diagnosis are also likely to be improved. The study 

of more complex rules and new detection mechanisms, like machine learning algorithms such 

as classification algorithms or groups detecting, would present an improvement of the quality 

of the results provided. 

To conclude, we think that this system is only the first step in creating an environment to 

support the development of REST services, offering the ability to debug not only the service 

but also additional features such as the generation of the service definition or client 

generation. 
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