
Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

A Bloom Filter with the Integrated Hash Table

Using an Additional Hashing Function

Reza Pourian

Department of Computer Engineering, Faculty of Engineering, Kermanshah Branch,

Islamic Azad University, Kermanshah, Iran

Tel: +98-9183304235 E-mail: r.e.pourian@iauksh.ac.ir

Mahmood Ahmadi

Department of Computer Engineering, Faculty of Engineering, University of Razi,

Kermanshah, Iran

Tel: +98-8334274595 E-mail: m.ahmadi@razi.ac.ir

Received: August 29, 2014 Accepted: January 3, 2015 Published: April 30, 2015

DOI:10.5296/npa.v7i1.6240 URL: http://dx.doi.org/10.5296/npa.v7i1.6240

Abstract

A Bloom filter is a simple space-efficient randomized data structure for representing a
set in order to support membership queries. In recent years, Bloom filters have increased in
popularity in database and networking applications. A Bloom filter has two steps that called
programming and membership query. In this paper, we introduce a new approach to integrate
a hash table (HT) with Bloom filter to decrease the HT access time. This means that when a
Bloom filter for an incoming item is programmed, the incoming item simultaneously is stored
in a HT. In addition in the membership query step, if the query is successful, simultaneously
the address of item in the HT is generated. Furthermore, we analyze the average bucket size,
maximum search length and number of collisions for the proposed approach and compare to
the fast hash table (FHT) approach. We implemented our approach in a software packet classi-
fier based on tuple space search with the H3 class of universal hashing functions. Our results
show that our approach is able to reduce the average bucket size, maximum search length and
number of collisions when compared to a FHT.

Keywords: Bloom filter, network processor, packet classification, universal hashing.

1 Introduction

Bloom filters are frequently utilized in databases and networking applications, such as
distributed databases, packet classification, packet inspection, forwarding, IP route lookup,

24 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

and distributed web caching [1][2][3][4][5][6]. The Bloom filter is utilized in four types of
network-related applications:

1. Collaboration in overlay and peer-to-peer networks: Bloom filter is utilized in overlay
and p2p networks.

2. Resource routing: Bloom filters allow probabilistic algorithms for locating resources.

3. Packet routing and classification: Bloom filters can be used to speed up packet routing
protocols.

4. Measurement: Bloom filters provide a useful tool for measurement infrastructures used
to create data summaries in routers and other network devices.

Most network devices, e.g., routers and firewalls, require the processing of incoming packets
(e.g., classification and forwarding) at wire speeds. These devices mostly incorporate special
network processors that are comprised of a processor core with several memory interfaces and
special co-processors that are optimized for packet processing [7]. The well-known gap be-
tween processor and memory performance has been a major source of concern for computing
in general; this problem is exacerbated in packet processing systems. Such memory bottlenecks
can be overcome by the following mechanisms: hiding of memory latencies through parallel
processing and reducing the memory latencies by introducing special memory architectures [8].
An approach to achieve higher lookup performance is to utilize the Bloom filter data structure
that recently has been introduced utilized in embedded memory for network processors [9][10].
Indeed, due to its high applicability in network packet processing, some modern network pro-
cessors incorporate dedicated Bloom filter units in their implementation [9].

Each Bloom filter has two steps includes programming and querying. In the programming
stage, given a string X, which is a member of the signature set, a Bloom filter computes k many
hash values on the input X by using k different hash functions. Then it uses these hash values
as index to the m-bit long lookup vector. It sets the bits corresponding to the index given by
the hash values computed. It repeats this procedure for each member of the signature set. In
the query stage, for an input string Y, Bloom filter computes k many hash values by utilizing
the same hash functions used in programming of the Bloom filter. Bloom filter looks up the bit
values located on the offsets (computed hash values) on the bit vector, and, If it finds any bit
unset at those addresses, it declares the input string to be a non-member of the signature set,
which is called a mismatch. Otherwise, it finds all the bits are set, it concludes that input string
may be a member of the signature set with a certain probability (false positive probability),
which is called a match.

A Bloom filter version that is often utilized in network processors and packet processing
applications is the counting Bloom filter. In the Bloom filters, for an input item, a separated
hashing operation through the hash table (HT) is needed. This means that after the membership
checking to access the memory a separated hashing function and HT access is required. To
decrease the memory access time in the Bloom filters, a caching policy and fast hash table
(FHT) techniques can be used, respectively [2][9]. The mentioned caching policy exploits
the Bloom filter properties to decrease the number of memory accesses [11][2]. The FHT
technique reduces the memory access time but has some limitations as: high processing time

25 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

due to incremental update, reconsideration of all items when inserting items, and limited use as
it works only in conjunction with counting Bloom filter and thereby reducing its applicability
for other applications. In this paper, we propose an approach to integrate the access of the HT
with Bloom filter operations that called Bloom Filter integrated with HT using an Additional
Hashing Function (BFAHF). In the other hands, in the programming step of the Bloom filter a
HT address to store an item using an additional hashing function is generated. In query step
the address of the stored item for the possible access using the mentioned additional hashing
function is generated. In addition, our approach operates independently from the counters in
the counting Bloom filter used in FHT and bit-array in the standard Bloom filter. This means it
can be applied with the all Bloom filter types. In this approach, we utilize an additional hashing
function to select one of the generated addresses by the k hashing functions in Bloom filters.
The utilization of an additional hashing function has the following advantages: decreasing
memory access time, and its simplicity to implement in hardware. The main contributions of
our work are the following:

• Proposal of a decreasing memory access time technique for Bloom filters using an addi-
tional hashing function.

• Analysis of the proposed approach in terms of different performance metrics (e.g., aver-
age bucket size, maximum search length, and the number of collisions) compared to the
FHT technique.

• Integration of the Bloom filter operation to the HT that holds the items.

• Implementation of the Bloom filter with the integrated HT using a hash-based software
packet classifier.

This paper is organized as follows. Section 2 presents related work. Section 3 describes the
concept of a Bloom filter. Section 4 describes the concept and architecture of Bloom filter
with the integrated HT using additional hashing function. Section 5 presents our software
implementation and results. In Section 6, we draw the overall conclusions.

2 Related Work

In this section, we take a brief look at previous works regarding the Bloom filter and its
memory organization. In [3][9], an extended version of the Bloom filter is considered. They
presented a FHT architecture and lookup algorithm that converts a Bloom filter into a count-
ing Bloom filter and an associated hash bucket. The FHT improves the performance over a
standard HT by reducing the number of memory accesses needed for the most time-consuming
lookups. It only works in conjunction with counting Bloom filters and needs to reconsider all
of the already inserted items for each item that consequently leads to longer processing time.
In [10], a hash architecture called a Multi-predicate Bloom-filtered Hash Table (MBHT) using
parallel Bloom filters is presented. It is generated off-chip memory addresses in the base-2x

number system, x ∈ {1, 2, ...}, which removes the overhead of pointers. Using a larger base
of number system, an MBHT reduces on-chip memory size. In [3][12], an approach to packet
classification which combines architectural and algorithmic techniques is presented. The start-
ing point is the well-known crossproduct algorithm which is fast but has significant memory
overhead due to additional rules needed to represent the crossproducts. The proposed approach

26 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

modifies the crossproduct method to reduce the memory requirement. Unnecessary accesses
to the off-chip memory are avoid by filtering them through on-chip Bloom filters. Compressed
Bloom filters (CBF) were introduced in [13], which improved performance when the Bloom
filter is passed as a message in distributed web caching protocols. The author investigated com-
pressed Bloom filter for distributed proxy web caching and showed that by using compressed
Bloom filters, proxies can reduce the number of bits broadcast, the false positive rate, and the
amount of computation per lookup. The CBF is useful when a query is preformed in distributed
environment that is sent a Bloom filter in the compressed form to the corresponding side.

In [2], a cache design based on the standard Bloom filter was investigated and was extended
to support ageing (adding the ability to evict stale entries from the cache), bound misclassifi-
cation rates, and use multiple binary predicates. It examined the exact relationship between
the size and dimension of the number of flows that can be supported and the misclassification
probability incurred. Additionally, it presented extensions for gracefully ageing the cache over
time to minimize misclassification.

In [14], utilization of a Matrix Bloom filter in a plagiarism checking system is proposed.
In this system, for each document in the library, a matrix Bloom filter is constructed then the
achieved Bloom filter for queried document is compared to the set of Bloom filters. cache. In
[15], the Bloom-1 and Bloom-g idea is proposed that performs membership check in one mem-
ory access, rather than k memory accesses in Bloom filter, but it needs more parameters than
Bloom filter and more complex operations. In the FHT [3][12], the searching and insertion cri-
teria are performed based on the value of counters that for each operation k (number of hashing
functions) counters should be inspected. In our previous work [16], the output addresses of k
hashing functions is selected using an additional hashing function that is performed indepen-
dently from the counters or bit-array in counting or standard Bloom filters, respectively. In this
work, we extend the BFAH and analytically show different performance criteria such as aver-
age bucket size, maximum search length and the number of collisions. We also implemented
a hash-based software packet classifier using BFAH and compare the results to other Bloom
filter implementations e.g., FHT.

3 Bloom Filters

A Bloom filter [17] is a simple space-efficient randomized data structure for representing
a set in order to support membership queries. A set S (x1, x2, ..., xn) of n items is represented
by an array V of m bits that are initially all set to 0. A set of k independent hash functions h1,
h2, ..., hk (each with an output range between 1 and m) is utilized to set k bits in array V at
positions h1(x), h2(x), ..., hk(x) for all x in set S. More precisely, for each item x ∈ S, the
bits at positions hi(x) are set to 1 for 1 ≤ i ≤ k. Moreover, a location can be set to 1 multiple
times. To verify whether an item y is a member of the set S, the same set of hash functions is
utilized to determine hi(y) (for 1 < i < k) indicating the locations in array V to be checked
whether their content is a 1. If one of these location yields a 0, y is certainly not a member
of the set S. If all locations yield a 1, there is a high probability that y is a member of the set
S (positive). However, as increasingly more bits in array V are set to 1, one can imagine that
the probability of a false positive will increase. It must be clear now that there is an inverse
relation between the number of bits in the array and the false positive rate. In the extreme case,
when all bits in the array are set, every search will yield a (false) positive [17][18][9]. The false
positive probability is given as follows:

27 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

P =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e

−kn
m

)k
(1)

In this equation, n represents the number of items, m represents the number of bits in the bit-
array and k represents the number of hashing functions. For a given m and n, the value of k
(the number of hash functions) that minimizes the probability is as follows:

k =
m

n
ln2 ≈ 9m

13n
≈ 0.7

m

n
(2)

4 Bloom Filter with the Integrated Hash Table using an Additional Hashing Function

In this section, we present our concept and analysis of Bloom filter with the integrated HT
using an additional hashing function.

4.1 The Bloom Filter with the integrated hash table using an Additional Hashing Function
(BFAHF) architecture and concept

The Bloom filter is space-efficient membership query tool that is used in network pro-
cessing applications. In packet processing application that utilized the Bloom filter after the
programming and querying steps of Bloom filter it needs to access the sought item. The item
is accessed independently from the Bloom filter operations. Therefore, this question must be
addressed. Is it possible to perform the Bloom filter operations and HT access simultaneously
that can save the memory access time? The answer is possible by integrating Bloom filter oper-
ation and HT accesses. The integration is performed using an additional hashing function. The
proposed solution has the following features:

• Decreasing of memory access time, by overlapping the Bloom filter operations and ac-
cessing HT.

• It can be applied to the all Bloom filter types. This is because, it works independently
from bit-array of Bloom filter.

• In the FHT the searching for an incoming item, requires inspection of k counters in
counting Bloom filter while in our approach a single hash value is computed.

The architecture of the Bloom filter with the integrated HT using an additional hashing function
is depicted in Figure 1.

28 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

k hashing

functions
Address

selector

Additional hashing

function

Generated address by

additional hashing function to

select other addresses

Selected address

to store in the

memory

Bit-array (counters)

Key (incoming item)

h1

hk

hi(key)

k

A
d

d
re

s
s
e

s

1

k

Standard (counting) Bloom filter

Figure 1: A Bloom filter architecture with the integrated HT using an additional hashing function.

In Figure 1, an incoming item is hashed by k hashing functions and the corresponding
bits are set (or counters are incremented in the counting Bloom filter) (see block A in Figure
1). Subsequently, one of the generated addresses by the k hashing functions is selected by
another hashing function. This address is used to store the item in question. The additional
hashing function receives the incoming key and selects one of k received addresses to store
in the memory. The output of the additional hashing function is a number that represents the
index of one of k addresses pointed to by hashing functions (see block B in Figure 1). The
generated addresses by the k hashing functions (block A in Figure 1) and generated number
by the additional hashing function is processed by the address selector unit in block A. This
component selects an address among the incoming addresses. It should be noted, the additional
hashing function works alongside the others k hashing functions. Therefore, the selected ad-
dress by the additional hashing function and generated addresses by k hashing functions are
available at the same time in the address selector unit. Additionally, in the FHT, the counters
should be searched to find the minimum counter but in this approach only one hashing key by
the additional hashing function is calculated.

Figure 2 depicts an example of how the integrated HT using an additional hashing func-
tion operates using the Bloom filter. In this example, we utilize the divide hashing function
“key mod k” as additional hashing function where k represents the number of hashing func-
tions and index of incoming items is supposed as input key. This is due to the simplicity of this
hashing function in the example.

Figure 2 (A) depicts a Bloom filter before any insertion therefore the values of the counters
or bits in the bit-array are zero. In the first step, rule R0 is hashed to addresses 0, 2, and 4 using
h0, h1, and h2 hashing functions (see Figure 2 (B)). The value of the counters are incremented
(or bit-array is set) and then a generated addresses by hashing functions should be selected to
store the rule R0 in the hashed address. Therefore, an additional hashing function selects one
address out of k generated addresses. The additional hashing function selects address 0 that

29 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

Counters

input
key

C
C
C
C
C

C
C
C

l

Size M M

H
as

hi
ng

 fu
nc

tio
ns

C

i ,1

2,1

1,1

1,2

2,2

i2,2

1,3

2,3

i3,3

Cother

3 2

1,2 1

M 1

1,2,3

Counting Bloom filter

C zero

level 3

3−level cache architecture

2 1

1

k

1

k

1

k

1

2

3

4

5

6

7

8

9

10

11

Address

0

00

C
o
u
n
te
rs

B
it-a
rra
y

R0

R1

R2

R3

1 1

0 0

1

00

1 1

1

00

0 0

00

00

0 0

0 0

0 0

R0
h0

11

R0

R1

R2

R3

2 1

0 0

2

00

1 1

1

11

0 0

00

00

0 0

0 0

00

C
o
u
n
te
rs

B
it-a
rra
y

R1

h0

h1

R0

Address

0

1

2

3

4

5

6

7

8

9

10

Address

0

1

2

3

4

5

6

7

8

9

10

11

2 1

0 0

3

00

1 1

1

12

1 1

00

12

1 1

0 0

00

C
o
u
n
te
rs

B
it-a
rra
y

R0

R1

R2

R3

h0

h1

h2

h0

R0

R1

R3

R2

Figure 2: A Bloom filter with the integrated HT using an additional hashing function. (A) An empty
Bloom filter (B) The Bloom filter after the insertion of rule R0 (C) The Bloom filter after the insertion
of rules R0 and R1 (D) Final Bloom filter after the insertion of four rules.

was generated by hashing function h0 and R0 is stored in the address 0. This is because the
index of R0 that is ‘0’, is divided to 3 (0 mod 3 = 0) and, finally address 0 is selected to store
the rule R0. In this example number of hashing function is 3.

Subsequently, R1 is hashed to addresses 0, 2, and 5 (see Figure 2 (C)). The values of
counters are incremented (bit-array is set) to 2, 2, and 1, respectively. Using the additional
hashing function “key mod k”, address 2 that was generated by hash function h1 is selected to
store the R1. As depicted Figure 2 (C), R2 is hashed to addresses 2, 6, and 8 and address 8 that
generated by h2 is selected to store rule R2. Finally, rule R3 after the hashing to addresses 5, 8
and 10 is stored at address 5.

4.2 Analysis of the Bloom Filter with the Integrated Hash Table using an Additional Hashing
Function

We analyze the FHT and the Bloom filter with the integrated HT using an additional hash-
ing function. In this analysis, the average bucket size, the maximum search length and the
number of collisions are investigated.

4.2.1 Analysis of average bucket size

The average bucket size is defined as the total number of stored items in the Bloom filter
divided by the number of non-empty entries (buckets). In the Bloom filter with n items and nk
hashing operations, the probability that a bucket receives exactly j insertions is expressed as:

30 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

p (b(i) = j) =

(
nk
j

)(
1

m

)j (
1− 1

m

)nk−j

(3)

In Eq. 3, b(i) represents the number of items in bucket(i). In this equation, to calculate the
probability of an empty bucket, j is set to 0. Therefore, the probability of non-empty buckets
is equal to 1 minus the probability of the empty buckets. Consequently, the probability of a
non-empty bucket is calculated as follows:

p(non− empty buckets) =

(
1−

(
1− 1

m

)nk
)

(4)

From Eq. 4, the expected number of the non-empty buckets is calculated as follows:

E(Number of non− empty buckets) = m

(
1−

(
1− 1

m

)nk
)

(5)

In a Bloom filter, the average bucket size is as follows:

Average bucket size in BF = Number of stored items
Number of non−empty buckets = nk

m
(
1−(1− 1

m)
nk

) (6)

In the Bloom filter with the integrated HT, in first step, for n items nk hashing operations
are performed using k hashing functions and the related bits in the bit-array are set. In a
Bloom filter with m bits (bit-array size), n items and k hashing functions, 1/m represents the
probability any one of the m bits set by a single hashing function operating on a single input
item. (1−1/m) is the probability that the bit is unset after a single hash value computation with
a single item. The probability that a bit is still unset after all the items are hashed into the Bloom

filter by using k independent hashing functions is
(
1− 1

m

)kn

. Therefore, the probability of set

bits in the bit-array is
(
1−

(
1− 1

m

)nk). Consequently, the expected number of set bits in the

bit-array is calculated using t = m
(
1−

(
1− 1

m

)nk). In the next step, an additional hashing
function selects n out of t addresses that set in the previous step. Using Eq. 5, the number of
selected items by the additional hashing function occupy t

(
1−

(
1− 1

t

)n) addresses, where t
is the number of set bits in the bit-array. Therefore, the average bucket size in the Bloom filter
with the integrated HT using additional hashing function is calculated as follows:

Aver. bucket size in Bloom filter with the integrated HT = n

t(1−(1− 1
t)

n
)
with t = m

(
1−

(
1− 1

m

)nk)
(7)

It should be noted, in the Bloom filter with the integrated hash table using additional hashing
function (BFAHF) n items are stored.
FHT can be assumed as a standard Bloom filter with one hashing function that selects n out of
nk hashed items, therefore, the average bucket size for fast HT is computed using Eq. 7 when
k = 1. Eq. 8, shows the average bucket size for the FHT.

Average bucket size in FHT = n

m(1−(1− 1
m)

n
) (8)

31 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

The average bucket size for the Bloom filter with the integrated HT using additional hashing
function, and FHT using Eqs 7 and 8 for the configuration k = ln(2)m/n that generates
minimum false positive probability is depicted in Figure 3.

Figure 3: Average bucket size for the Bloom filter with the integrated hash table (BFAHF) and FHT
when k = m

n ln(2)).

Figure 3 depicts average bucket size in term of m/n (m is number of bits in the bit-array
and n is number of the items). To generate minimum false positive probability k = ln(2)m/n.
From Figure 3, we can observe that the shortest average bucket size belongs to the BFAHF.
The graph in Figure 3 shows that Bloom filter with the integrated HT has average bucket size
shorter than FHT. Additionally, from Figure 3, we can observe that when the value of m/n is
increased the average bucket size of Bloom filter with the integrated HT and FHT is closed to
each other. In this case, for m/n = 50 the difference of average bucket size between Bloom
filter with the integrated HT and FHT is less than 1%.

4.2.2 Maximum search length

The maximum search length is defined as a maximum number of items that are inserted
in the buckets. It can be used as a worst case search to access an item. In the standard Bloom
filter, the expected number of items which their buckets included j items is equal to average
number of buckets multiplied by the item per bucket (3), therefore, it is calculated as follows:

E(Number of items which their buckets included j items) = nkj

((
nk
j

)(
1
m

)j (
1− 1

m

)nk−j
)

(9)
In Eq. 9, nk is the number of hashed items and j is the bucket size (number of items per
bucket). In Bloom filter with the integrated HT, in first step, all nk hashed items are hashed
using k hashing functions and related bits in the bit-array are set. The number of set bits in the
bit-array is calculated using t = m

(
1−

(
1− 1

m

)nk). In the next step, an additional hashing
function selects n out of t addresses that set in the previous step. Therefore, in a Bloom filter
with the integrated HT, the probability of a bucket with j items is represented as follows:

32 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

p (Bucket with j items) =

(
n
j

)(
1
t

)j (
1− 1

t

)n−j (10)

Using Eq. 10, the number of items with bucket size j in the Bloom filter with the integrated
HT is calculated as follows:

E(Number of items which bucket size = j) = nj

((
n
j

)(
1
t

)j (
1− 1

t

)n−j
)

(11)

For FHT, maximum search length is computed when in the standard Bloom filter the number
of hashing functions is set to 1. Hence, the number of items with bucket size j is calculated as
follows:

E(Number of items which bucket size = j) = nj

((
n
j

)(
1
m

)j (
1− 1

m

)n−j
)

(12)

Using Eqs. 11 and 12, the maximum search length for FHT and Bloom filter with the
integrated HT when k = ln(2)m/n is depicted in Figure 4.

Figure 4: Maximum search length for Bloom filter with the integrated HT and FHT when k =
ln(2)m/n.

From Figure 4, we can observe that, the maximum search length of Bloom filter with the
integrated HT is longer than FHT. As an example, for m = 10000, n = 2000 and k = 4, 3,
and 1 buckets received more than 3 items in the Bloom filter with the integrated HT, and FHT,
respectively.

4.2.3 Number of collisions

A common problem in using hashing is collision that means the mapping of incoming
items to the same HT location. Consequently, when an incoming item is hashed to a HT entry
containing multiple items it must be matched to all these items resulting in a much longer
processing time. In the Bloom filter, for each item, collision is detected when the number of

33 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

hashed items to the related location is larger than bucket size. Therefore, in the Bloom filter
using Eq. 3, the probability of number of collisions for ith address in the bit-array is as follows:

p (col(i)with bucket size p) =

pmax−1∑
j=p

(j+1− p)

(
nk

j + 1

)(
1

m

)j+1(
1− 1

m

)nk−j−1

(13)

In Eq. 13, col(i) shows the number of collisions for ith address when the bucket size is set to p,
while pmax shows the maximum bucket size. Using Eq. 13, the expected number of collisions
in the standard Bloom filter is as follows.

E (Number of collisions in the standard BF) =

nk
∑pmax−1

j=p (j + 1− p)

(
nk

j + 1

)(
1
m

)j+1 (
1− 1

m

)nk−j−1 (14)

It is obvious that to calculate the number of hashed items to each address the value of p is set to
1. As we discussed previously, we can extend Eq. 12 for BFAHF and FHT. In the BFAH, in first
step, all nk hashed items are hashed using k hashing functions and related bits in the bit-array
are set. The number of set bits in the bit-array is calculated using t = m

(
1−

(
1− 1

m

)nk). In
the next step, an additional hashing function selects n out of t addresses that set in the previous
step. Therefore, in a BFAH, using Eq. 12, the expected number of collisions is presented as
follows.

E (Number of collisions BFAHF) = n

pmax−1∑
j=p

(j+1−p)
(

n
j + 1

)(
1

t

)j+1(
1− 1

t

)n−j−1

(15)
For FHT, number of collisions is computed when in the standard Bloom filter the number of
hashing functions is set to 1. Hence, the number of collisions is calculated as follows.

E (Number of collisions FHT) = n

pmax−1∑
j=p

(j + 1− p)

(
n

j + 1

)(
1

m

)j+1(
1− 1

m

)n−j−1

(16)
Using Eq.s 14, 15 and 16, the number of collisions for the standard, FHT and the BFAHF when
k = ln(2)m/n is depicted in Figure 6. In this figure, the number of collisions in the BFAHF
and FHT is normalized to n and in the standard Bloom filter is normalized to nk. In the BFAHF
and FHT number of the stored items is n while in the standard Bloom filter is nk. In addition,
the value of pmax is set to 16. This is because, the analysis by Fan, et al. [6] for counting Bloom
filter shows 4-bit counter is enough for most applications. In the other words, in all types of
Bloom filters the probability for each address to receive more than 16 items is very small.

34 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

Figure 5: Number of collisions for standard, BFAHF and FHT when k = ln(2)m/n.

In Figure 6, we can observe that the number of collisions in BFAHF and FHT are converged
when the value of

m

n
is increased. As an example, for m = 20000, n = 1000 and k = 14 the

number of collisions are 1, 4 and 2509 for FHT, BFAHF and standard Bloom filter. It should
be noted that in this example, 1000 items are stored in the BFAHF and FHT and 14000 items
are stored in the standard Bloom filter.

5 Implementation and Results

In this section, we present the implementation results of a software packet classifier that
utilizes the standard, FHT and a BFAHF in tuple space packet classification and subsequently
show the results.

5.1 Implementation

We implemented a software packet classifier [19] based on the tuple space search that
utilizes of standard Bloom filter, FHT, and BFAHF. A high-level approach for multiple field
search employs tuple spaces with a tuple representing information in each packet header field
specified by the rules. Srinivasan, et. al., [20][21][22] introduced the tuple space approach and
the collection of tuple search algorithms. The tuple space framework utilizes of the concept
of searching on prefix lengths to cope with multidimensional packet classification. In multi-
dimensional packet classification, each rule defines prefix specifications on multiple packet
header fields, and therefore each rule has more than one prefix length. The vector of prefix
lengths of a rule is called a tuple, and the tuple space is the set of distinct tuples in a rule-
set. The rules mapped to the same tuple can be searched using one hash operation. For each
tuple, we utilize a Bloom filter (Bloom filter with an additional hashing function) with a set
of universal hashing functions. The class of universal hashing functions is called H3 hashing
functions that we utilize in the software packet classifier [23][24]. Based on the tuple space
representation for rule-set databases and IP packets, the size of an input key is 88 bits (32
bit source IP address, 32 bit destination IP address, 8 bit Range-ID, 8 bit Nesting-Level and
8 bit protocol bit). The concept of Range-ID and Nesting-Level is defined to represent the
tuple value of port ranges [20][21]. In this implementation, based on our observations of rule

35 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

distribution in the tuples the maximum size of tuple or address space is assumed 216 rules for
16 bit address. Therefore, Q88×16 denotes a set of matrices to define an H3 hashing function
for tuple space packet classification algorithm [25].

5.2 Results

For the testing purpose, we use different rule-set databases and packet traces that were
utilized by the Applied Research Laboratory in Washington University in St. Louis [26][27].
The specification of the rule-set databases and packet traces is presented in Table 1.

Rule database FW1-100 FW1-1k FW1-5k FW1-10k FW1 ACL1 IPC1
Number of rules 92 971 4653 9311 266 752 1550
Number of tuples 26 42 52 57 36 44 179

Packet trace FW1-100 FW1-1k FW1-5k FW1-10k FW1 ACL1 IPC1
Number of packets 920 8050 46700 93250 2830 8140 17020

Table 1: Rule-set databases and packet traces specification.

Table 1 includes seven rule-sets databases and packet traces. The rule-sets FW1, ACL1,
IPC1 were extracted from real rule-sets and the other were generated by the Classbench bench-
mark. More details on Classbench, rule-set databases, and packet traces can be found in [26].
In the figures that will be presented later the horizontal axis represents two sequences of data.
The sequence with label k shows the number of hashing functions and later one shows the
corresponding value of m/n that is calculated based on Eq. 2 to minimize the false positive
probability. In addition, the graphs show the average bucket size, the maximum search length
and the number of collisions for all of the rule-set databases in Table 1.

5.2.1 Investigation average bucket size

In Section 4.2.1, we analyzed the average bucket size and observed that the average bucket
size in the BFAHF is shorter than standard Bloom filter. In here, we present the average bucket
size for the standard Bloom filter, FHT and BFAHF using a software packet classifier. The
graph of average bucket size for standard Bloom filter, FHT and BFAHF is depicted in Figure
6.

In Figure 6, the vertical axis represents the average bucket size in terms of the items per
bucket. From this figure, we can observe that the BFAHF has the average bucket size shorter
FHT. For instance, when m/n = 26 and k = 18, the difference is 2%. Furthermore, the
increase in the number of hashing functions and the corresponding m/n value decrease the
average bucket size in BFAHF and FHT. It should be noted, when k = 1, two mentioned
Bloom filters operate as a simple hashing system.

5.2.2 Investigation maximum search length

In Section 4.2.2, we analyzed the maximum search length for FHT and BFAHF. In this
section, we present the maximum search length of the FHT and BFAHF using a software packet
classifier. The graph of maximum search length for the 3 Bloom filters is depicted in Figure 7.

From Figure 7, we can observe that the maximum search length for BFAHF, and FHT is
almost the same. In FHT, the maximum search length is changed between 3 and 4 while for

36 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

Figure 6: Average bucket size for standard Bloom filter, FHT filter and BFAHF.

Figure 7: Maximum search length for BFAHF and FHT.

the BFAHF the maximum search length is 3. We can observe that when the m/n is increased
maximum search length for BFAHF and FHT converge to the same value.

5.2.3 Investigation number of collisions

The graph of the number of collisions for BFAHF and FHT is depicted in Figure 8. In this
figure, the average number of collisions for all rule-set databases is normalized to n (number
of rules in rule-set database) for the FHT and BFAHF.

37 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

Figure 8: Average number of collisions for all rule-set databases that normalized to n (number of rules
in rule-set database) for FHT and BFAHF.

Based on Figure 8, we can observe that the number of collisions for FHT converges to the
number of collisions in the BFAHF when the value of m/n is increased.

5.2.4 Discussion

In general, we observed that the utilization of BFAHF decreases the average bucket size,
maximum search length and the number of collisions in comparison to the FHT. As we ex-
pected, the analytical results is verified by the software packet classifier results. In addition, in
the FHT, for each incoming item, k counters should be investigated but in the BFAHF the ad-
dress is directly selected. Furthermore, BFAHF can be applied to all Bloom filters types while
the FHT only works with counting Bloom filter.

The presented results show that the BFAHF approach enhances different performance met-
rics compared to the FHT that this means the memory bottleneck in high performance network
processing applications can be overcome.

6 Overall Conclusions

In this paper, we presented a new approach to decrease the memory utilization in the stan-
dard Bloom filter. We utilize an additional hashing function to select a generated address by
hashing functions in the Bloom filter. Utilization of an additional hashing function increases
the performance of Bloom filter (in term of average bucket size, maximum search length and
number of collisions) in comparison to the FHT. Our analysis and software implementation
results validate this. The main advantage of the BFAHF technique is that it be applied to all
Bloom filter types but the FHT technique only works with counting Bloom filter. The FHT
technique needs a parallel search among the counters pointed to by hashing functions to find
the counter with minimum value while the BFAHF approach accesses the item in question only
using one hash operation. We expect this approach to be useful in the design of high perfor-
mance memory architectures and processing engines (e.g., forwarding, packet inspection and
classification) utilized in the network processors and others network processing applications.
In our future work, we use the quotient filter in the routing table design and test it using open
source router environments.

38 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

7 Acknowledgement

The authors wish to thank the Islamic Azad University for supporting projects. This re-
search was supported by Islamic Azad University, Kermanshah Branch, Kermanshah, Iran.

[1] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”
in Proc. 14’th Annual Allerton Conf. on Communication, Control, and Computing,
2002, pp. 636–646. [Online]. Available: http://www.eecs.harvard.edu/∼michaelm/
NEWWORK/postscripts/BloomFilterSurvey.pdf

[2] F. W.-c. F. Chang and L. Kang, “Approximate Caches for Packet Classification,” in
23’th Annual Conf. of the IEEE, Infocom, 2004, pp. 2196–2207. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2004.1354643

[3] J. T. S. Dharmapurikar, S. Song and J. Lockwood, “Fast Packet Classification Using
Bloom Filters,” Department of Computer Science And Engineering, Washington
University in St. Louis, Tech. Rep. 27, 2006. [Online]. Available: http://dx.doi.org/10.
1145/1185347.1185356

[4] B. B. B. Donnet and T. Friedman, “Retouched Bloom Filters: Allowing Networked
Applications to Flexibly Trade Off False Positives Against False Negatives,” in
Proc. of the ACM CoNEXT 2006 conference, 2006, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1145/1368436.1368454

[5] L. F. V. C. Esteve and M. F. Magalh, “Towards a new generation of information-oriented
internetworking architectures,” in Proc. of the 2008 ACM CoNEXT Conference, 2008,
pp. 1–6. [Online]. Available: http://dx.doi.org/10.1145/1544012.1544077

[6] J. A. L. Fan, P. Cao and A. Z. Broder, “Summary Cache: A Scalable Wide-Area (WEB)
Cache Sharing Protocol,” IEEE/ACM Trans. on Networking, vol. 8, no. 3, pp. 281–293,
2000. [Online]. Available: http://dx.doi.org/10.1109/90.851975

[7] M. Ahmadi and S. Wong, “Network Processors: Challenges and Trends,” in Proc. of the
17th Annual Workshop on Circuits, Systems and Signal Processing, ProRisc 2006, pp.
223–232. [Online]. Available: http://ce.et.tudelft.nl/publicationfiles/1221\ 758\ Pro\
Risk\ Paper.pdf

[8] H. V. J. Mudigonda and R. Yavatkar, “Overcoming the Memory Wall in Packet
Processing: Hammers or Ladders?” in Proc. of Symp. on Architecture for Networking
and Communications systems (ANCS-05). ACM Press, 2005, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1145/1095890.1095892

[9] S. D. H. Song, J. Turner and J. Lockwood, “Fast Hash Table Lookup Using Extended
Bloom Filter: An Aid to Network Processing,” in Proc. of Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communications, 2005, pp.
181–192. [Online]. Available: http://dx.doi.org/10.1145/1090191.1080114

[10] H. Yu and R. N. Mahapatra, “A Memory-Efficient Hashing by Multi-Predicate Bloom
Filters for Packet Classification,” in INFOCOM, 2008, pp. 1795–1803. [Online].
Available: http://dx.doi.org/10.1109/INFOCOM.2008.242

39 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

[11] M. Ahmadi and S. Wong, “A Cache Architecture for Counting Bloom Filters,” in Proc.
of 15th IEEE Int. Conf. on Networks (ICON2007), pp. 218–213. [Online]. Available:
http://dx.doi.org/10.1109/ICON.2007.4444089

[12] J. T. S. Dharmapurikar, H. Song and J. Lockwood, “Fast Packet Classification Using
Bloom Filters,” in Proc. of the ACM/IEEE Symp. on Architecture for Networking and
Communications Systems. ACM, 2006, pp. 61–70.

[13] M. Mitzenmacher, “Compressed Bloom Filters,” in Proc. of the 20th annual ACM
Symp. on Principles of Distributed Computing (PODC 01), 2001, pp. 144–150. [Online].
Available: http://dx.doi.org/10.1109/TNET.2002.803864

[14] S. Geravand and M. Ahmadi, “An efficient and scalable plagiarism checking system
using bloom filters,” Computers & Electrical Engineering, vol. 40, no. 6, pp. 1789–1800,
2014. [Online]. Available: http://dx.doi.org/10.1016/j.compeleceng.2014.06.003

[15] T. L. Y. Qiao and S. Chen, “Fast Bloom Filters and Their Generalization,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 25, no. 1, pp. 93–103, Jan 2014.
[Online]. Available: http://dx.doi.org/10.1109/TPDS.2013.46

[16] M. Ahmadi and S. Wong, “A Memory-optimized Bloom Filter using An Additional
Hashing Function,” in Proc. of IEEE Globecom 2008 Next Generation Networks,
Protocols, and Services Symposium, 2008, pp. 1–5. [Online]. Available: http:
//dx.doi.org/10.1109/GLOCOM.2008.ECP.476

[17] B. H. Bloom, “Space /Time Trade-offs in Hash Coding with Allowable Errors,”
Communication of the ACM, vol. 13, no. 7, pp. 422–426, 1970. [Online]. Available:
http://dx.doi.org/10.1145/362686.362692

[18] S. Kumar and P. Crowley, “Segmented Hash: An Efficient Hash Table Implementation
for High Performance Networking Subsystems,” in Proc. Symp. on Architecture for
Networking and Communications Systems (ANCS05), 2005, pp. 91–103. [Online].
Available: http://dx.doi.org/10.1145/1095890.1095904

[19] M. Ahmadi and S. Wong, “Modified Collision Packet Classification Using Counting
Bloom Filter in Tuple Space,” in Proc. of the 25’th IASTED Int. Conf. on Parallel and
Distributed Computing and Networks (PDCN 2007), pp. 70–76. [Online]. Available:
http://ce.et.tudelft.nl/publicationfiles/1272\ 664\ iasted\ 152\ ahmadi.pdf

[20] V. Srinivasan, “A Packet Classification and Filter Management System,” in
Proc. Int. IEEE Conf. INFOCOM, 2001, pp. 1464–1473. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2001.916642

[21] S. S. V. Srinivasan and G. Varghese, “Packet Classification Using Tuple Space
Search,” in Proc. Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 1999, pp. 135–146. [Online]. Available: http:
//dx.doi.org/10.1145/316194.316216

[22] D. E. Taylor, “Models, Algorithms, and Architectures for Scalable Packet Classification,”
Ph.D. dissertation, Department of Computer Science and Engineering Washington

40 www.macrothink.org/npa

Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol.7, No.1

University, 2004. [Online]. Available: http://www.arl.wustl.edu/∼jst/studentTheses/
dTaylor-2004.pdf

[23] J. C. Lawrence and M. N. Wegman, “Universal Classes of Hash Functions,” in Proc.
of the 9th annual ACM symposium on Theory of computing. ACM Press, 1977, pp.
106–112. [Online]. Available: http://dx.doi.org/10.1145/800105.803400

[24] E. F. M. V. Ramakrishna and F. Bahcekapili, “Efficient Hardware Hashing Functions for
High Performance Computers,” IEEE Trans. Computer., vol. 46, no. 12, pp. 1378–1381,
1997. [Online]. Available: http://dx.doi.org/10.1109/12.641938

[25] M. Ahmadi and W. S, “Hashing Functions Performance in Packet Classification,” in Proc.
of Int. Conf. on the Latest Advances in Networks (ICLAN-2007), 2007, pp. 127–132.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.9642

[26] H. Song, “Evaluation of Packet Classification Algorithms,” 2006,
http://www.arl.wustl.edu/ hs1/PClassEval.html. [Online]. Available: http://www.arl.
wustl.edu/∼hs1/PClassEval.html

[27] D. E. Taylor, “Evaluation of Packet Classification Algorithms,” http://
www.arl.wustl.edu/ hs1/PClassEval.html3.FilterSets, 2006, applied Research Labo-
ratory Department of Computer Science and Engineering Washington University in Saint
Louis.

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

41 www.macrothink.org/npa

