
 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Centrality-based Connected Dominating Sets for
Mobile Ad hoc Networks

Natarajan Meghanathan

Department of Computer Science, Jackson State University

1400 John R. Lynch Street, Jackson, MS 39217, USA

Tel: 1-601-979-3661 E-mail: natarajan.meghanathan@jsums.edu

Received: April 9, 2015 Accepted: July 21, 2015 Published: July 31, 2015

DOI: 10.5296/npa.v7i2.7414 URL: http://dx.doi.org/10.5296/npa.v7i2.7414

Abstract

Centrality measures capture the topological importance of a node in a network graph and they
have been currently used to find the most influential nodes or the key nodes in large-scale
complex network networks such as the social networks, Internet, transportation network,
disease network, etc. A connected dominating set (CDS) for a graph is the set of nodes such
that every node in the graph is either in this set or directly connected to a node in this set.
CDSs form the backbone of a network and have been typically used for all broadcast
communication within the network. In this paper, we investigate the use of centrality
measures to determine CDSs for mobile ad hoc networks (MANETs) - a category of wireless
networks whose topology changes dynamically with time. CDSs for MANETs have been
traditionally determined using the degree centrality measure, but such CDSs have been
observed to be quite unstable in the presence of node mobility. In this paper, we explore the
use of more complex centrality measures such as the eigenvector centrality (EVC),
betweenness centrality (BWC) and closeness centrality (ClC) to determine CDSs for
MANETs, and evaluate the stability of these centrality-based CDSs with that of a
degree-based CDS and the maximum stable CDS determined using a benchmarking
algorithm.

Keywords: Centrality; Connected Dominating Set; Mobile Ad hoc Networks; Simulations;
Stability

1. Introduction

A mobile ad hoc network (MANET) is a dynamic distributed system of wireless devices
(nodes) moving arbitrarily in a network without any centralized control [1]. The nodes move

www.macrothink.org/npa 16

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

independent of each other and the network topology changes dynamically with time. The
transmission medium is shared and transmissions are prone to collisions and interference.
Nodes operate with a limited battery charge. To conserve node lifetime and reduce collisions
due to long-range transmissions, nodes in MANET operate in a limited transmission range for
direct communication. As a result, communication between any two nodes is typically in a
multi-hop fashion involving one or more intermediate nodes. Various protocols for unicast
[2-3], multicast [4-5] and broadcast communication [6-7] have been proposed for MANETs.

In recent years, we have also seen works focusing on developing benchmarking
algorithms [8-9] that model the underlying topology for communication as a graph-theoretic
construct such as paths for unicast source-destination routes, trees for multicast
communications and connected dominating sets (CDS) for broadcast communication and
target at determining the best possible values that could be accomplished for the performance
metrics associated with these topologies (for e.g., path hop count, path lifetime, tree height,
CDS node size, etc). The benchmarking algorithms typically assume a centralized
environment where the entire sequence of network topology changes are known ahead of
time as well as assume ideal physical and medium access control layers for the
communication protocols at the network layer to extract the best possible performance. We
take a similar approach in this paper and focus on arriving at certain benchmarks for
connected dominating sets and the use of centrality measures [10] to determine them.

A Connected Dominating Set (CDS) for a network graph (nodes modeled as vertices and
links as edges) is a subset of the vertices such that every vertex in the set is either in the CDS
or is a neighbor (in the adjacency list) of a node in the CDS [11]. A CDS is typically
considered the backbone of a network and the constituent nodes of a CDS (i.e., the nodes that
are part of a CDS) are used for facilitating broadcast communication initiated from any node
in the network [12]. In MANETs, network-wide broadcasts are viewed as an expensive
communication operation in terms of both energy consumption as well as the volume of the
traffic generated and the resulting collisions in the neighborhood of the nodes. If
network-wide broadcasts are implemented in the form of flooding wherein each node
broadcasts the message once in its neighborhood, it results in a node receiving the same
message once from each of its neighbors and losing a significant amount of energy due to
multiple receptions of duplicate messages [13]. Also, the network medium is prone to
collisions due to redundant retransmissions. Thus, the motivation is to use a CDS wherein
only the nodes that are part of the CDS retransmit the message and the rest of the nodes (that
are not part of the CDS, but connected to at least one of the nodes in the CDS) merely receive
the message and not retransmit. The fewer the nodes that are part of the CDS (i.e., lower the
CDS Node Size), the fewer the number of redundant messages being received at the nodes
while still ensuring that all nodes receive at least one copy of the message being broadcast.
Unfortunately, the problem of determining a minimum node size CDS (abbreviated as MCDS)
is an NP-hard problem [11]. Hence, the focus of research has been traditionally on
developing heuristics (e.g., [14-16]) that determine CDSs with an approximation ratio as low
as possible. A common thread among these heuristics is to give preference to nodes that are in
the neighborhood of a larger number of nodes (i.e., nodes having a larger degree) to be part of

www.macrothink.org/npa 17

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

the CDS so that all the nodes in the network can be eventually covered with a fewer number
of nodes. Thus, several maximum degree-based MCDS heuristics (e.g., [17-18]) were
developed with the idea of minimizing the CDS Node Size as much as possible.

In [19], a benchmarking algorithm to determine maximum lifetime CDS was developed
for MANETs; assuming the entire sequence of future topology changes is known a priori, the
algorithm determines a sequence of long-living stable CDSs as follows: Whenever a CDS is
required at time instant t, we determine a connected graph of the network (called a mobile
graph) whose constituent edges exist for the longest possible time starting from time instant t;
we then simply run a CDS algorithm/heuristic on the mobile graph and use the CDS for the
duration of the mobile graph and repeat the above procedure for the entire network session.
The algorithm can be used to arrive at a sequence of long-living stable CDSs such that the
number of transitions (changes from one CDS to another) required during a network session
is the global minimum and the average CDS lifetime for the network session is the global
maximum (benchmarks). In [19] and other related works [20-22], it has been observed that
maximum-degree and minimum node size-based CDS is quite unstable (i.e., have a lower
lifetime) when compared to the maximum possible CDS lifetime that could be obtained under
identical conditions.

With the recent splurge of research interests in the area of Network Science, there has
been renewed focus on the use of graph-theoretic centrality measures for quantitatively
analyzing the importance of nodes in complex networks. The centrality measures could be of
two types [10]: degree-based and shortest path-based. The degree centrality (DegC) and
eigenvector centrality (EVC) are two common degree-based centrality measures, while the
betweenness-centrality (BWC) and closeness centrality (ClC) are two common shortest
path-based centrality measures. The degree centrality of a node is simply the number of
neighbors for the node, whereas, the eigenvector centrality of a node is a measure of the
degree of the node as well as the degree of its neighbors. If two nodes have identical degree,
but one of them has neighbors with relatively lower degree than the other node, then the node
in a high-degree neighborhood will have a relatively larger eigenvector centrality. The
betweenness-centrality of a node is a measure of how significant a node is in facilitating
shortest-path communication between any two nodes in the network; the betweenness
centrality of a node is the ratio of the number of shortest paths a node is part of for any
source-destination node pair in the network, summed over all possible source-destination
pairs that do not involve the particular node. The closeness centrality of a node is a measure
of how close is the node to the rest of the nodes in the network; it is simply the inverse of the
sum of the minimum number of hops from the node to every other node in the network.

One common thread among all the above four centrality measures is that the larger the
centrality score for a node (according to any of these four measures), the larger the
importance of the node in the network. Assuming that we have a centralized view of the
MANET topology at any time, we propose to determine a sequence of connected dominating
sets using each of these centrality measures and evaluate their average CDS Lifetime and
average CDS Node Size over the duration of the MANET session. We intend to explore
whether any of the three centrality measures (EVC, BWC, ClC) could contribute to finding a

www.macrothink.org/npa 18

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

relatively stable CDS than the one obtained with the traditionally used degree centrality
measure as well as compare the average lifetime of the CDSs obtained with these four
centrality measures with that of the maximum possible CDS lifetime obtainable through our
benchmarking algorithm for Maximum Stable CDS run under identical operating conditions.
To the best of our knowledge, we have not come across any paper that uses centrality
measures (other than degree centrality) as the basis to determine CDSs for MANETs. Note
that our focus in this paper is not to determine a stable CDS [20-21]; our focus is rather to
investigate whether any of the other commonly studied centrality measures could be used to
determine a CDS whose lifetime is larger than that of the degree centrality-based CDS for
MANETs without any substantial increase in the CDS Node Size.

The rest of the paper is organized as follows: Section 2 introduces the four centrality
measures investigated in this research along with an example. Section 3 presents a generic
algorithm that is used to determine a CDS based on any of the centrality measures and also
presents an algorithm used to validate the existence of a CDS at any time. Section 4 presents
the benchmarking algorithm for determining Maximum Stable CDS and the proof of
correctness that it finds the sequence of maximum lifetime CDSs for a MANET session.
Section 5 presents the simulation results obtained for the four centrality measures-based
CDSs as well as the Maximum Stable CDS under various scenarios of node mobility and
analyzes the tradeoffs. Section 6 concludes the paper. Throughout the paper, the terms 'node'
and 'vertex', 'edge' and 'link' are used interchangeably. They mean the same.

2. Centrality Measures

We now discuss the four centrality measures studied in this paper to quantitatively assess
the importance of vertices and illustrate their computation with an example.

2.1 Degree Centrality

The degree centrality of a node is the number of edges incident on the node. The larger
the degree of the node, the higher its rank is. Figure 1 illustrates an example to compute the
degree centrality of the vertices. As noticed, the degree centrality measure is likely to lead to
tie among one or more vertices and may not be an accurate measure to unambiguously rank
the vertices.

Figure 1: Example to Illustrate the Computation of Degree Centrality

www.macrothink.org/npa 19

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

2.2 Eigenvector Centrality

Eigenvector centrality of a vertex in an undirected graph is a measure of the degree of the
vertex as well as the degree of its adjacent vertices. The Eigenvector centrality (EVC) of the
vertices in a network graph is the principal eigenvector of the adjacency matrix of the graph.
The principal eigenvector has an entry for each of the n-vertices of the graph. The larger the
value of this entry for a vertex, the higher is its ranking with respect to Eigenvector centrality.
In Figure 2, we illustrate the use of the Power Iiteration method [23] to efficiently calculate
the principal eigenvector for the adjacency matrix of a graph. As can be seen in the example
of Figure 2, Eigenvector centrality of a vertex is a function of both its degree as well as the
degree of its neighbors. For instance, we see that both vertices 2 and 4 have the same degree
(3); however, vertex 4 is connected to three vertices that have a high degree (3); whereas
vertex 2 is connected to two vertices that have a relatively low degree (of degree 2); hence,
the EVC of vertex 4 is larger than that of vertex 2. As can be seen in the example of Figure 2,
the Eigenvector centrality values of the vertices are more likely to be distinct and could be a
better measure for unambiguously ranking the vertices of a network graph.

Figure 2: Example to Illustrate the Calculation of Eigenvector Centrality using Power Iteration Method

2.3 Betweenness Centrality

Betweenness centrality (BWC) is a measure of how significant a node is in facilitating
communication between any two nodes in the network. Betweenness centrality for a node is
the ratio of the number of shortest paths a node is part of for any source-destination node pair
in the network, summed over all possible source-destination pairs that do not involve the

www.macrothink.org/npa 20

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

particular node. If the number of shortest paths between two nodes j and k that go through
node i as the intermediate node is denoted as spjk(i) and the total number of shortest paths
between the two nodes j and k is denoted as spjk, then the Betweenness centrality for node i is

given by: ∑
≠≠

=
ikj jk

jk

sp
isp

iBWC
)(

)(.

Figure 3: Example to Illustrate the Calculation of Betweenness Centrality

Figure 3 illustrates an example to compute the Betweenness centrality of the vertices in
the example graph that is also used in Figures 1 and 2. We notice that Betweenness
centrality-based ranking of the vertices is different from the Degree centrality and
Eigenvector centrality-based ranking of the vertices. The Degree and Eigenvector centralities
consider only the degree of the vertices and they are positively correlated . However, the
BWC centrality takes into consideration the contribution of a vertex in facilitating
communication between any two vertices in the network on the shortest path; such vertices
are likely to be more central to the network and form the backbone or the core of the network.
As can be seen in the example presented in Figure 3, vertices 2, 4 and 7 all have degree 3
each; however vertices 2 and 7 facilitate shortest path communication between a majority of
the vertex pairs, especially from one community (vertices 5, 6 and 8) to another community
(vertices 1, 3 and 4). Though vertex 4 has a high degree, it does not lie on the shortest path
for several pairs of vertices, and hence has a low BWC value.

www.macrothink.org/npa 21

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

2.4 Closeness Centrality

Closeness Centrality of a vertex is the inverse of the sum of the shortest path distances to
all the other vertices in the graph and hence is a measure of the proximity of the vertex to the
rest of the vertices in the graph. The larger the value of the inverted sum of shortest path
distances on the BFS tree of a vertex, the higher is its rank based on Closeness centrality.
Figure 4 illustrates an example to compute Closeness centrality. Note that vertices 2, 4 and 7
that lie in the center of the network and have the lowest sum of the shortest path distances (12)
to every other vertex (and hence have the largest value for the inverse of the sum) are ranked
to have the largest Closeness centrality; though vertices 2 and 7 also had the highest
Betweenness centrality, vertex 4 had a lower Betweenness centrality.

Figure 4: Example to Illustrate the Calculation of Closeness Centrality

3. Connected Dominating Set

A connected dominating set (CDS) is a subset of the vertices of a graph such that each
vertex in the graph is either in the subset or is a neighbor of a vertex in the subset [11]. In this
section, we first describe a generic heuristic that could be used to determine the CDS of a
graph based on a quantitative score (like the centrality values) for the vertices in the graph.
We then illustrate examples to show the execution of the generic CDS construction algorithm
for each of the four centrality measures explained in Section 2. We finally describe an
algorithm that can be used to validate the existence of a CDS at any time instant.

3.1 Generic Heuristic to Determine a CDS

The overall idea is to give preference (for inclusion to the CDS) for vertices that have a
larger value for the centrality measure. As indicated in the pseudo code of Figure 5, we
maintain three lists: CDS Node List - vertices that are part of the CDS; Uncovered Node List -
vertices that are yet to be covered by a node in the CDS Node List; Candidate Node List -
vertices that are covered by a node in the CDS Node List and are not yet considered for
inclusion to the CDS Node List. Initially, the CDS Node List is empty and the Uncovered
Node List is the set of all the vertices in the graph; to start with, the Candidate Node List has
a single entry corresponding to the vertex that has the largest centrality score. The Candidate

www.macrothink.org/npa 22

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Node List is implemented as a priority queue and the vertices in the Candidate Node List are
stored in the decreasing order of their centrality score (the vertex with the largest centrality
score is the first vertex to be removed from this list). In each iteration, we remove a vertex
from the Candidate Node List and if it has one or more uncovered neighbor nodes, then the
vertex is added to the CDS Node List and the newly covered neighbor nodes are removed
from the Uncovered Node List and included in the Candidate Node List. If a vertex removed
from the Candidate Node List has no uncovered neighbors, then the vertex is not included in
the CDS Node List.

--
Input: Graph G = (V, E); the Centrality Score Vector C(V) for all the vertices
Output: CDS Node List
Initialization: CDS Node List = ϕ; ∀ x∈V, Uncovered Node List = {x; C(x)}

 Candidate Node List = {s; C(s)} where s ∈V and C(s) =)}({ iCMax
Vi∈

Begin CDS Construction
 while (Candidate Node List ≠ ϕ AND Uncovered Node List ≠ ϕ) do
 Vertex candidateNode = Dequeue(Candidate Node List)
 uncoveredNodes = {x | x ∈Neighbors(candidateNode) AND x ∈Uncovered Node List}
 if (uncoveredNodes ≠ ϕ) then
 CDS Node List = CDS Node List ∪ {candidateNode}
 ∀ x ∈ uncoveredNodes,
 Uncovered Node List = Uncovered Node List - {x; C(x)}
 Candidate Node List = Candidate Node List ∪ {x; C(x)}
 end if
 end while
 if (Uncovered Node List ≠ ϕ) then
 return NULL // indicating the graph is not connected
 end if
 return CDS Node List // indicating the graph is connected
End CDS Construction

Figure 5: Pseudo Code for a Generic CDS Construction Heuristic based on a Centrality Measure

We repeat the above procedure until the Uncovered Node List gets empty or there are no
more vertices in the Candidate Node List. If the Candidate Node List gets empty while the
Uncovered Node List is not yet empty, then it implies the underlying graph is not connected
(i.e., all the vertices are not in one component). If the underlying graph is connected, the
iterations stop when there are no more vertices in the Uncovered Node List (this implies, all
the vertices in the graph are covered by at least one node in the CDS Node List). Note that the
centrality score for a node is determined offline (prior to the execution of the heuristic) and is
not updated during the execution of the heuristic. In other words, the ordering of the nodes in

www.macrothink.org/npa 23

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

the Candidate Node List in each iteration is based on the initial (static) centrality scores input
to the heuristic. Thus, for example, if two nodes u and v with degree centrality scores of 4 and
6 respectively are in the Candidate Node List, but node v has only two uncovered neighbors
whereas node u has three uncovered neighbors, node v with a relatively larger degree
centrality score would still be ahead of node u in the Candidate Node List. If two or more
vertices have the same initial centrality score and each of them have at least one uncovered
neighbor during any iteration, then the tie is broken in favor of the vertex with the smaller ID
for the examples presented in Figures 6-9 (Section 3.2), whereas the tie is broken arbitrarily
among the contending vertices in the simulations (Section 5).

The time complexity for the generic CDS construction heuristic is O(VlogV + ElogV),
where V and E are respectively the number of vertices and edges in the network graph;
O(logV) is the time complexity for a dequeue operation in a priority queue (Candidate Node
List) maintained as a maximum heap [11] as well as the time complexity to include a vertex
in the Candidate Node List by visiting the neighbors of the vertex that is added to the CDS
Node List. We could run the while loop at most V times, once for each vertex, and across all
such iterations, the entire set of edges are traversed and the end vertices of the edges are
considered for inclusion to the Candidate Node List. Hence, the overall time complexity of
the generic heuristic to construct a CDS is O((V+E) logV). Note that the centrality scores of
the vertices are assumed to be obtained offline and the time complexity to determine the
centrality scores for the vertices is not accounted in evaluating the time complexity of the
generic CDS construction heuristic.

3.2 Examples to Construct Centrality-based CDS

In this section, we show the execution of the generic heuristic (explained in Section 3.1)
on the network graph that was used in Section 2 to introduce the four centrality measures. For
each vertex in Figures 6-9, the ID is indicated inside the circle and the centrality score of the
vertex is indicated outside the circle. The last graph in each of these figures is a CDS graph
comprising of only edges between two CDS nodes (indicated as solid lines) and edges
between a non-CDS node and a CDS node (indicated as dotted lines).

www.macrothink.org/npa 24

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Figure 6: Example to Illustrate the Construction of a Degree Centrality-based CDS

Figure 6 illustrates the execution of the heuristic to determine degree centrality-based
CDS: in iteration 3, even though vertices 3 and 7 have the same larger degree (3), vertex 3 is
not considered for inclusion to the CDS because all of its three neighbors are already covered
(i.e., none of the neighbors of vertex 3 are in the Uncovered Node List); on the other hand
vertex 7 has one uncovered neighbor and is hence included to the CDS Node List. The
sequence of vertices included in the DegC-CDS are 2, 4, 7 and 6. Figure 7 illustrates the
execution of the generic heuristic to construct Eigenvector Centrality-based CDS (EVC-CDS)
with the sequence of vertices included being 4, 3, 7, 2, and 6. Since nodes with a high EVC
are considered for inclusion as long as they have at least one uncovered node, we observe a
relatively larger number of nodes to be part of the EVC-CDS - a similar observation is also
made in our simulation results - this contributes to the stability of the EVC-CDS, as can be
also observed through a relatively dense EVC-CDS graph.

Figure 7: Example to Illustrate the Construction of a Eigenvector Centrality-based CDS

www.macrothink.org/npa 25

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Figures 8 and 9 respectively show the execution of the generic heuristic to determine a
Betweenness Centrality-based CDS (BWC-CDS) and Closeness Centrality-based CDS
(ClC-CDS). As can be seen, the DegC-CDS, BWC-CDS and ClC-CDS tend to be of
comparable size (in the toy example shown in Figures 6, 8 and 9 - the constituent nodes of all
the three CDSs are the same: vertices 2, 4, 6 and 7) - a pattern that is also observed in the
simulations to a certain extent. One significant observation could be made in the toy example
and the centrality-based CDSs shown in Figures 6-9: Vertex 3 (having a high EVC score)
with relatively a higher degree (3) is connected to two high-degree vertices (vertices 4 and 7),
but does not contribute much in terms of covering nodes that are yet in the Uncovered Nodes
List once vertices 4 and 7 get into the CDS Node List. Thus, vertex 3 is a highly enclosed
vertex that is not exposed much to vertices outside its own community. On the other hand,
when we consider vertices 2 and 7 that are also of the same degree as vertex 3, we notice that
even if vertex 2 gets into the CDS Node List, vertex 7 could also get into the CDS Node List,
because the two vertices (vertices 2 and 7) are connected to two different
vertices/communities (vertices 8 and 6) that only either of them could cover, but not both.

Figure 8: Example to Illustrate the Construction of a Betweenness Centrality-based CDS

www.macrothink.org/npa 26

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Figure 9: Example to Illustrate the Construction of a Closeness Centrality-based CDS

3.3 Algorithm to Validate the Existence of a CDS

We now present the algorithm that we use to validate the existence of a CDS at any time
instant. This algorithm would be very useful in discrete-event simulations when we tend to
use a CDS that existed at an earlier time instant (say, t-1) also at a later time instant (t). That
is, given a CDS Node List that was connected (i.e., the CDS nodes are reachable from one
another directly or through one or more intermediate CDS nodes) and covered the non-CDS
nodes in the network graph at time instant t-1, we want to validate whether the same holds
true at time instant t. We do so by first constructing a CDS graph based on the CDS Node List
at time instant t. All the vertices in the network are part of the CDS graph and the edges in the
CDS graph are those that exist between any two CDS nodes as well as between a CDS node
and a non-CDS node at time instant t (like the CDS graphs shown in Figures 6-9). We check
if the CDS Node List is connected at time instant t by running the Breadth First Search (BFS)
[11] algorithm, starting from an arbitrarily chosen CDS node and see if every other CDS node
could be reached as part of the BFS traversal only on the CDS-CDS edges. If all the CDS
nodes could be visited, the CDS Node List is considered to be connected. We then check
whether every non-CDS node has an edge to at least one CDS node at time t. If both the
validations (connectivity of the CDS Node List and coverage of every non-CDS node by at
least one CDS node) are true, then we consider the CDS to exist at time instant t.

4. Benchmarking Algorithm for Maximum Stability Connected Dominating Set

In this section, we describe a benchmarking algorithm [19] proposed to determine a

www.macrothink.org/npa 27

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

sequence of longest-living connected dominating sets for MANETs such that the number of
transitions is the global minimum and the average lifetime of the CDS is the maximum. We
refer to the algorithm as the Maximum Stable CDS algorithm; it works on the basis of graph
intersections and assumes the a priori availability of information about topology changes for
the entire duration of the network session. The algorithm introduces the notion of a mobile
graph G(t,, t+k) = G(t) ∩ G(t+1) ∩ G(t+2) ∩ ... ∩ G(t+k), wherein G(t), G(t+1),
G(t+2), ..., G(t+k) are static graphs (snapshots) of the network at time instants t, t+1, t+2, ...,
t+k respectively. A mobile graph G(t,, t+k) is thus a graph that essentially captures the
vertices and edges that exist in the network for all the time instants t, t+1, t+2, ..., t+k. Note
that even when two nodes u and v are mobile, an edge (u, v) is considered to exist at time
instants t, t+1, t+2, ..., t+k if the two nodes u and v are within the transmission range of each
other during each of these time instants; the actual locations of the end nodes of the edge
during each of these time instants does not matter from the point of view of the Maximum
Stable CDS benchmarking algorithm.

The Maximum Stable CDS algorithm works as follows: Whenever a CDS is required at
time instant t, we determine a mobile graph G(t,, t+k) such that G(t,, t+k) is connected
(i.e., all the vertices are in one single component, reachable from each other) and G(t, ...,
t+k+1) is not connected. We determine a CDS on such a longest-living connected mobile
graph G(t,, t+k) and repeat the above procedure for the duration of the network session to
obtain a sequence of longest-living CDSs such that the number of transitions needed to
change from one CDS to another is the optimum (minimum). We say the optimum number of
transitions incurred is the global minimum because the algorithm assumes the knowledge of
the entire topology changes and always chooses the longest-living mobile graph since the
time instant starting from which a CDS is needed. Later, we also prove that the number of
transitions accomplished by any other CDS construction algorithm cannot be below the value
obtained for the Maximum Stable CDS algorithm. Accordingly, the average of the lifetimes
of the longest-living connected dominating sets in the sequence determined by the Maximum
Stable CDS algorithm for the duration of the network session is the global maximum and can
serve as a benchmark to compare the average lifetime incurred with any other sequence of
CDSs (like each of the centrality-based CDSs) under identical conditions.

Input: Static graphs G1, G2, ..., GT, where T is the duration of the network session
Output: Maximum Stable CDS
Auxiliary Variables: i, j
Initialization: Maximum Stable CDS = ϕ; i = 1; j = 1
Begin Maximum Stable CDS Construction
 while (i ≤ T) do
 while G(i, ..., j) is connected AND j ≤ T do
 j ← j + 1
 end while
 if (i < j) then

www.macrothink.org/npa 28

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

 j ← j - 1
 Maximum Stable CDS = Maximum Stable CDS ∪ {CDS in G(i, ..., j) }
 i ← j + 1
 end if
 else
 i ← i + 1
 end else
 j ← i
 end while
return Maximum Stable CDS
End Maximum Stable CDS Construction

Figure 10: Pseudo Code for the Benchmarking Algorithm to Determine Maximum Stable CDS

As seen in the pseudo code for the Maximum Stable CDS algorithm (Figure 10), it does
not matter what CDS construction heuristic we use to determine a CDS in each of the
longest-living mobile graphs G(i, ..., j), because the CDS would not exist in the mobile graph
G(i, ..., j+1) as the latter would not be a connected graph. In this research, we determine the
connected dominating sets in the longest-living mobile graph G(i, ..., j) based on the degree
of the vertices in the mobile graph G(i, ..., j). The average lifetime of the Maximum Stable
CDS would not be affected because of this; however, the size of the Maximum Stable CDS is
likely to be affected. As degree centrality-based CDSs are likely to incur a lower CDS Node
Size, it would be only appropriate to determine the connected dominating sets in each of the
longest-living mobile graphs G(i, ..., j) using the degree of the vertices in the mobile graph so
that the Maximum Stable CDS would incur a lower CDS Node Size and at the same time
incur the maximum lifetime.

www.macrothink.org/npa 29

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Figure 11: Example to Illustrate the Execution of the Maximum Stable CDS Benchmarking Algorithm and a
Comparison of Maximum Stable CDS vs. Degree Centrality-based CDS

The time complexity of the Maximum Stable CDS algorithm depends on the time
complexity of the underlying heuristic used to determine the CDSs in each of the mobile
graphs. As one can see in the pseudo code (Figure 10), there could be at most T mobile
graphs (where T is the number of static graph snapshots, number of graph samples) on which
a CDS heuristic needs to be run; if we use a Θ(V2) heuristic to determine degree-based CDSs,
then the overall time complexity of the Maximum Stable CDS algorithm is O(V2T).

4.1 Example

Figure 11 presents an example to illustrate the execution of the Maximum Stable CDS
algorithm on a sequence of five static graphs G1, ..., G5 and a comparison of the number of

www.macrothink.org/npa 30

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

transitions (changes from one CDS to another) and CDS Node Size incurred for Maximum
Stable CDS vis-a-vis a Degree Centrality-based CDS on the same sequence of static graphs.
We see that there exists a connected mobile graph G(1, 2, 3) and a connected mobile graph
G(4, 5). Hence, it would suffice to use one CDS determined on the mobile graph G(1, 2, 3)
and another CDS determined on the mobile graph G(4, 5) - resulting in only one CDS
transition across the five static graphs. On the other hand, the degree centrality-based CDS
determined on an individual static graph does not exist in the subsequent static graph. Hence,
we end up determining a new degree centrality-based CDS on each of the five static graphs -
resulting in a total of four CDS transitions across the five static graphs. In Figure 11, we use a
degree-based heuristic to determine a CDS on each of the two mobile graphs. We do observe
a tradeoff between CDS Node Size and the number of CDS transitions. The average CDS
Node Size incurred for the Maximum Stable CDS is (3*5 + 2*7) / 5 = 5.8, whereas the
average CDS Node Size incurred for Degree Centrality-based CDS is (3*4 + 2*5) / 5 = 4.4.
The mobile graphs G(1, 2, 3) and G(4, 5) have relatively fewer links than the individual static
graphs. Hence, it is not possible to cover a larger number of nodes with the inclusion of few
nodes in the CDS. As a result, the Maximum Stable CDS incurs a relatively larger CDS Node
Size compared to that of the Degree Centrality-based CDS. Such tradeoffs are also observed
in the simulation results presented in Section 5.

4.2 Proof of Correctness

In this section, we prove that the Maximum Stable CDS algorithm determines a sequence
of stable CDSs such that the number of CDS transitions is the global minimum. We will use
the technique of "Proof by Contradiction." To start with, we will assume there exists a
hypothetical CDS algorithm that determines a sequence of CDSs such that the number of
CDS transitions is less than that incurred by the Maximum Stable CDS algorithm. As part of
the proof, we will explore whether such a hypothetical CDS algorithm can exist and conclude
that it cannot exist. We will first present an informal proof of correctness, followed by a
formal proof. For more details about the proof, the interested reader is referred to [19].

Informal Proof: We present an informal proof through the example (hypothesis)
illustrated in Figure 12. We show two timelines in Figure 12: one timeline for the Maximum
Stable CDS algorithm and another timeline for the hypothetical CDS algorithm. Both the
algorithms start at time instant t1 and end at time instant tT. As shown in the timelines, let the
Maximum Stable CDS algorithm make two transitions (one transition at time instant ta and
another transition at time instant tb) and let the hypothetical CDS algorithm just make one
transition (at time instant tc). We will now argue whether this would be feasible. Note that tc
cannot be greater than ta, as the Maximum Stable CDS algorithm made a transition at ta
because it could not find a connected mobile graph that spans from time instant t1 to time
instants ta or above. Hence, tc ≤ ta. In that case, if the hypothetical CDS algorithm has to
make no further transitions beyond tc, there has to be a connected mobile graph that spanned
from time instant tc (with tc ≤ ta) to the ending time instant tT. However, the fact that the
Maximum Stable CDS algorithm made a transition at tb implies that there was no connected
mobile graph spanning from time instant ta to time instants tb or above. If there existed a
connected mobile graph that spanned from ta to tT, our Maximum Stable CDS algorithm

www.macrothink.org/npa 31

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

would have also found it and used it (as it seeks to find a connected mobile graph that would
exist for the longest time instant starting from time instant ta). Hence, it would not be possible
for the hypothetical CDS algorithm to find a connected mobile graph (and hence a CDS) that
spanned from time instants tc (with tc ≤ ta) to tT. Thus, the hypothetical CDS algorithm also
has to make a transition at either time instant tb or before tb. In other words, it is evident that
the hypothetical CDS algorithm has to undergo at least the same number of transitions as that
of the Maximum Stable CDS algorithm. This is a contradiction to our hypothesis that the
Maximum Stable CDS algorithm made two transitions and the hypothetical CDS algorithm
made one transition, as illustrated in Figure 12.

Figure 12: Hypothesis to Illustrate Proof of Correctness for the Maximum Stable CDS Algorithm
[Proof Technique: Proof by Contradiction]

Basis for the Formal Proof: The only way the hypothetical CDS algorithm (in Figure 12)
can undergo fewer transitions than the Maximum Stable CDS algorithm is when there existed
an epoch of time instants [like tc... tT in Figure 12, where tc ≤ ta] during which the
hypothetical CDS algorithm made no transitions and the Maximum Stable CDS algorithm
made at least one transition. However, based on the above discussion it is evident that such a
scenario is not possible. This observation forms the basis for the formal proof of correctness
discussed below.

Formal Proof: We now present a formal proof of correctness for the Maximum Stable
CDS algorithm. To prove that the Maximum Stable CDS algorithm finds a sequence of
long-living CDSs that incur the minimum number of transitions (say m), assume the contrary
- i.e., there exists a hypothetical CDS algorithm that determines a sequence of CDSs that
undergo n transitions such that n < m. We will now explore whether this is possible. For n <
m to exist, there has to be an epoch of time instants [p, ..., s] that is a superset of an epoch of
time instants [q, .., r] such that p < q < r < s and that the hypothetical CDS algorithm was able
to find a CDS that existed during time instants [p, ..., s], but the Maximum Stable CDS
algorithm can only find a CDS that existed during time instants [q, ..., r] and had to go a
transition at time instant r + 1. This implies the Maximum Stable CDS algorithm could not
find a connected mobile graph G(q, ..., r+1) and could only find a connected mobile graph
G(q, ..., r). This means there existed no connected mobile graph from time instants [q, ..., s]

www.macrothink.org/npa 32

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

and hence there is no connected mobile graph from time instants [p, ..., s]. If that is the case,
it would not be possible to find a CDS that exists from time instants [p, ..., s]; thus, the
sequence of CDSs determined by the hypothetical CDS algorithm has to undergo at least as
many transitions as those determined by the Maximum Stable CDS algorithm, which is a
contradiction to our initial assumption that n < m. Hence, the number of transitions (m)
incurred by the sequence of long-living CDSs determined by the Maximum Stable CDS
algorithm serves as a lower bound for the number of transitions (n) incurred by any other
algorithm/heuristic to determine a sequence of CDSs.

5. Simulations

We conducted the simulations in a discrete-event simulator implemented in Java. We
assume a network of dimensions 1000m x 1000m; the number of nodes is fixed as 100 and
the transmission range of the nodes is fixed at 250m; for these values, on average, there are
π*250*250*100/(1000*1000) = 20 neighbors per node. The overall connectivity of the
network for the above conditions is observed to be more than 99.5%. Initially, the nodes are
uniform-randomly distributed throughout the network. The number of static nodes in the
network is varied with values of 0, 20, 40, 60 and 80. A node designated to be static in the
beginning of the simulation does not move at all for the duration of the simulation; likewise,
a node designated as mobile - keeps moving for the entire simulation.

The node mobility model used is the Random Waypoint Model [24], wherein the
maximum velocity of each mobile node is vmax and it is varied with values of 5 m/s (low
mobility), 25 m/s (moderate mobility) and 50 m/s (high mobility). According to the Random
Waypoint Model, each mobile node starts from its initial location and chooses to move to an
arbitrary location (located within the network boundaries) with a velocity that is
uniform-randomly selected from the range [0, ..., vmax]; after moving to the chosen location,
the node chooses another arbitrary location (within the network) and moves to the chosen
location with a new velocity that is uniform-randomly chosen from the range [0, ..., vmax]. In
other words, a node moves in a straight line from one location to another chosen location
with a particular velocity and after reaching the targeted location, the node chooses another
target location to move with a velocity that could be different from the one used before. A
mobile node moves like this for the duration of the simulation session and generates a
mobility profile for a particular combination of values for the number of static nodes and
maximum node velocity. The collection of the mobility profiles of all the nodes is stored in a
mobility profile file and is feed in to the heuristics/algorithms for determining a
centrality-based CDS and the Maximum Stable CDS. We generate 100 such mobility profile
files for each of the combinations of the values for the number of static nodes (0, 20, 40, 60
and 80) and the maximum node velocity (5 m/s, 25 m/s and 50 m/s). The decision of whether
a node will be static or mobile is made prior to creating each of the mobility profile files.

We run the simulations for each mobility profile file and average the results observed for
the CDS Lifetime and CDS Node Size under each of the centrality measures as well as the
Maximum Stable CDS algorithm. We start the simulations at time 0 sec (based on the initial

www.macrothink.org/npa 33

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

distribution of the nodes in a particular mobility profile file) and run the simulations for a
period of 1000 seconds, sampling the network for every 0.25 seconds of the simulation. We
take a snapshot of the network at each of these sampling time instants (referred to as the static
graphs). We use the following approach to run the simulations for a particular centrality
measure: Whenever a CDS is needed at a particular time instant t, we determine the centrality
scores of the nodes based on the static graph snapshot of the network at time instant t and
feed in these scores to the CDS construction heuristic (described in Section 3.1). The CDS
determined at time instant t is used for the subsequent sampling time instants as long as it
exists (validated using the algorithm presented in Section 3.3). When the currently known
CDS is observed to no longer exist at a particular time instant, we repeat the above procedure.
We continue like this for the duration of the simulation and measure the lifetime and node
size for the sequence of centrality-based connected dominating sets used for the particular
mobility profile file. We average the results for these two metrics observed for all the
mobility profile files generated for a particular combination of values for the number of static
nodes and vmax (see Figures 13, 14 and 15 for the results). In the case of the Maximum Stable
CDS algorithm, for a particular simulation run under a mobility profile file, we determine a
sequence of connected mobile graphs for the duration of the simulation session and run the
degree-based CDS construction heuristic to determine a sequence of connected dominating
sets. We repeat this procedure for all the mobility profile files generated and determine the
average of the lifetime and node size for the sequence of Maximum Stable CDSs for the
particular combination of values of the number of static nodes and vmax. The results for the
Maximum Stable CDS are shown along with the centrality-based CDSs in Figures 13, 14 and
15.

5.1 Average CDS Lifetime

Among the four centrality measures, we observe the Eigenvector Centrality-based CDS
(EVC-CDS) to be consistently sustaining for the longest lifetime for all the mobility
scenarios, closely followed by the Closeness Centrality-based CDS (ClC-CDS). For a given
number of static nodes, the percentage difference between the lifetimes of the EVC-CDS and
ClC-CDS is lower for vmax values of 25 and 50 m/s (see Figures 14-a and 15-a) compared to
vmax values of 5 m/s (see Figure 13-a). For all the mobility scenarios, the Betweenness
Centrality-based CDS (BWC-CDS) incurs the lowest lifetime among all the centrality
measures-based CDSs; the Degree Centrality-based CDS (DegC-CDS) incurs a longer
lifetime than the BWC-CDS (about 30% larger) but a lower lifetime compared to that of the
ClC-CDS and EVC-CDS. For a given vmax, the difference between the lifetimes of the
DegC-CDS and the EVC-CDS (or the ClC-CDS) increases from 5% to 40% with increase in
the number of static nodes.

www.macrothink.org/npa 34

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

 Figure 13-a: Average CDS Lifetime Figure 13-b: Average CDS Node Size

Figure 13: Average CDS Lifetime and Average CDS Node Size for Centrality-based CDSs and Maximum Stable
CDS [Maximum Node Velocity, vmax = 5 m/s]

 Figure 14-a: Average CDS Lifetime Figure 14-b: Average CDS Node Size

Figure 14: Average CDS Lifetime and Average CDS Node Size for Centrality-based CDSs and Maximum Stable
CDS [Maximum Node Velocity, vmax = 25 m/s]

 Figure 15-a: Average CDS Lifetime Figure 15-b: Average CDS Node Size

Figure 15: Average CDS Lifetime and Average CDS Node Size for Centrality-based CDSs and Maximum Stable
CDS [Maximum Node Velocity, vmax = 50 m/s]

For all vmax values, when the network is dynamically changing (0 static nodes), the values
for the average CDS lifetime incurred with all the four centrality measures are comparable;
the percentage difference increases as we increase the number of static nodes (for a given
vmax), especially when the number of static nodes gets to 60 and 80. For a fixed number of
static nodes, the percentage difference between the lifetime of the CDSs determined under the
four centrality measures decreases with increase in the maximum node velocity. In other
words, as we increase the node velocity (for a fixed number of static nodes), the CDS
lifetimes with respect to all the four centrality measures converges; nevertheless, the
EVC-CDS lifetime is substantially larger than that of the BWC-CDS and DegC-CDS lifetime
for all the mobility scenarios. For a scenario of 80 static nodes, the average EVC-CDS
lifetime is about 120% more than that of the BWC-CDS when vmax = 5 m/s (see Figure 13-a)

www.macrothink.org/npa 35

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

and is about 60% more than that of BWC-CDS when vmax = 50 m/s (see Figure 15-a). The
larger lifetime obtained for the EVC-CDS could be attributed to the relatively larger number
of nodes constituting the EVC-CDS, compared to those incurred for the BWC-CDS (that
incurs the smallest CDS Node Size) and the other centrality measures. The EVC-CDS Node
Size is about 70% larger than that incurred for the BWC-CDS for all the mobility scenarios.
This illustrates a CDS Lifetime - CDS Node Size tradeoff (explored further in Section 5.3).

When compared to the benchmark CDS lifetimes obtained from the Maximum Stable
CDS algorithm run with the same set of mobility profile files, we observe the stability of the
connected dominating sets determined under all the four centrality measures to be
substantially lower (compared to the Maximum Stable CDS) when the number of static nodes
is 0, 20 and 40. However, when more than half of the nodes are static, the lifetimes incurred
with the centrality-based connected dominating sets swiftly approach the lifetime incurred for
the Maximum Stable CDS. For vmax values of 25 m/s and 50 m/s, and 80 static nodes (see
Figures 14-a and 15-a), we observe the EVC-CDS lifetime to be only at most 5% lower than
that of the lifetime incurred for Maximum Stable CDS. Under the same set of conditions, the
BWC-CDS lifetime is observed to be about 50-60% of the lifetime incurred for the Maximum
Stable CDS.

A significant observation is that for a given vmax, the lifetime of the Maximum Stable CDS
does not increase substantially with increase in the number of static nodes. Likewise, as we
increase vmax from 5 m/s to 50 m/s, the average lifetime incurred for the Maximum Stable
CDS increases by a factor of 1.4-2.3 as we increase the number of static nodes from 0 to 80.
This could be attributed to the fact that the mobility of certain percentage of nodes is
sufficient to disrupt the connectivity of the mobile graphs spanning over several time instants.
On the other hand, as we increase vmax from 5 m/s to 50 m/s, the CDS lifetime under all the
four centrality measures increases substantially (by factors as large as 15 for EVC-CDS) with
increase in the number of static nodes from 0 to 80. Thus, even if a certain fraction of nodes
move faster, the presence of a significant fraction of static nodes helps to boost the lifetime of
the CDSs determined under the four centrality measures.

5.2 Average CDS Node Size

With regards to the CDS Node Size (see Figures 13-b, 14-b, 15-b), for a given centrality
measure, we do not observe any significant impact of the mobility scenarios. For a given vmax,
the DegC-CDS and the Maximum Stable CDS (both are degree based) display a marginal
decrease (by a factor of about 20%) in the CDS Node Size with increase in the number of
static nodes. Other than this, the CDS Node Size incurred for CDSs determined with respect
to each of the centrality measures remains almost at the same value, independent of the vmax
values and the number of static nodes. The EVC-CDS and BWC-CDS incur respectively the
largest and smallest CDS Node Size values for all the mobility scenarios (the percentage
difference is about 70%). The CDS Node Size incurred with the DegC-CDS and ClC-CDS
are respectively about 30% and 55% more than that incurred with the BWC-CDS. The
relatively lower CDS Node Size incurred with the BWC-CDS (in comparison with the
DegC-CDS) is an interesting and significant observation. Until now in the literature, the

www.macrothink.org/npa 36

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

degree-based criterion for forming CDS has been considered to return the smallest possible
CDS Node Size for MANETs [16-22]; however, as we observe in the simulation results, for
all the conditions tested, the BWC-CDS incurs an appreciably smaller CDS Node Size
compared to that of the DegC-CDS, EVC-CDS and ClC-CDS. This could be attributed to the
fact that though the shortest path-based CDSs (like BWC-CDS) do not take the degree of the
nodes into consideration while forming the CDS, a node that has a higher degree is more
likely to have a shorter path to several other nodes as well as more likely to be on the shortest
path between several node pairs [25]. Thus, the inclusion of high degree nodes that lie on the
shortest path for several other node pairs (i.e., high degree vertices having high BWC) could
contribute to a lower CDS Node Size.

5.3 CDS Node Size - CDS Lifetime Tradeoff

An interesting observation is that the Maximum Stable CDS could incur a substantial
longer CDS Lifetime without any significant increase in the CDS Node Size. On the contrary,
among the four centrality measures, the EVC-CDS incurs a longer CDS Lifetime at the
expense of a larger CDS Node Size. The CDS Node Size incurred for the DegC-CDS and the
Maximum Stable CDS are very much comparable and are about the same for most of the
mobility scenarios. The knowledge of the future topology changes is the key factor for the
Maximum Stable CDS benchmarking algorithm and the resulting stability. Given the lack of
such a global network-wide and future knowledge, we have to choose an appropriate
centrality measure to determine stable CDSs that exist for a longer lifetime without
substantial increase in the CDS Node Size. In this pursuit, we analyze the CDS Node
Size-CDS Lifetime tradeoff as the value of the ratio CDS Node Size / CDS Lifetime. The
smaller the value of this ratio (closer it is to zero), the better the centrality measure with
respect to minimizing the tradeoff.

Figure 16 displays the CDS Node Size / CDS Lifetime tradeoff ratio for vmax values of 5,
25 and 50 m/s. For any of the four centrality-based CDSs, the tradeoff ratio increases with
increase in the dynamicity of the network. For a fixed number of static nodes, the tradeoff
ratio increases with increase in the maximum node velocity. For a fixed vmax, the tradeoff ratio
decreases with increase in the number of static nodes. Among the four centrality measures,
for vmax values of 50 m/s (see Figure 16-c), we observe the BWC-CDS to incur a relatively
lower tradeoff ratio (compared to the other centrality-based CDSs) when the number of static
nodes is typically on the low end (0 and 20). This implies that by accommodating relatively
fewer nodes as part of the CDS, the BWC-CDS incurs a proportionally larger CDS Lifetime
when compared to that of the EVC-CDS incurring a larger CDS Lifetime by accommodating
more CDS nodes. On the other hand, when vmax = 5 m/s or 25 m/s (see Figures 16-a and 16-b)
and when the number of static nodes is on the higher end (40, 60 and 80), the tradeoff ratio
values incurred with all the four centrality-measures based CDSs are comparable, with the
EVC-CDS and ClC-CDS incurring a slightly lower tradeoff ratio (but not much different
from that of the DegC-CDS and BWC-CDS).

www.macrothink.org/npa 37

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

 Figure 16-a: vmax = 5 m/s Figure 16-b: vmax = 25 m/s

 Figure 16-c: vmax = 50 m/s

Figure 16: CDS Node Size - CDS Lifetime Tradeoff Ratio for Centrality Measures-based CDSs

6. Conclusions

The simulation studies return interesting results that form the key revelations of this paper
with regards to the use of centrality measures for mobile ad hoc networks (MANETs). We
have identified a centrality measure (eigenvector centrality, EVC) that could be used to
determine CDSs that are more stable than those traditionally determined using the degree
centrality measure. We have also identified a centrality measure (betweenness centrality,
BWC) that can be used to determine CDSs whose constituent node size could be smaller than
that of the CDSs determined using the degree centrality measure. Nevertheless, we witness a
CDS Node Size - CDS Lifetime tradeoff: the EVC-CDS is the most stable, but incurs the
largest values for the CDS Node Size; whereas, the BWC-CDS incurs the smallest values for
the CDS Node Size, but it is the least stable.

When the network topology changes dynamically, we observe the CDS Lifetimes
obtained under all the four centrality measures to be very much comparable to each other and
are far lower than the maximum possible CDS lifetime obtained for the Maximum Stable
CDS. On the other hand, as we increase the fraction of static nodes in the network, the
lifetimes of all the four centrality-based CDSs increase significantly (in a concave-up fashion)
and approach the benchmarking lifetimes obtained with the Maximum Stable CDS algorithm
run under identical operating conditions (especially in the case of EVC-CDS). We anticipate
the results observed in this paper to open further avenues of research on the use of centrality
measures-based connected dominating sets for mobile ad hoc networks.

Acknowledgment

The research is financed by the NASA EPSCoR sub award (#: NNX14AN38A) from
University of Mississippi.

www.macrothink.org/npa 38

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

References
[1] Murthy, C. S. R., Manoj, B. S., Ad Hoc Wireless Networks: Architectures and Protocols,
1st ed., Prentice Hall, June 2004.
[2] Johnson, D. B., Maltz, D. A., “Dynamic Source Routing in Ad Hoc Wireless Networks,”
Mobile Computing - The Kluwer International Series in Engineering and Computer Science,
Vol. 353, pp. 153-181, 1996. http://dx.doi.org/10.1007/978-0-585-29603-6_5
[3] Perkins, C. E., Royer, E. M., “Ad Hoc On-demand Distance Vector Routing,” 2nd IEEE
Workshop on Mobile Computing Systems and Applications, pp. 90-100, New Orleans, LA,
USA, February 25-26, 1999. http://dx.doi.org/10.1109/MCSA.1999.749281
[4] Wu, C. W., Tay, Y. C., “AMRIS: A Multicast Protocol for Ad hoc Wireless Networks,”
IEEE Military Communications Conference, Vol. 1, pp. 25-29, Atlantic City, NJ, USA,
October 31-November 3, 1999. http://dx.doi.org/10.1109/MILCOM.1999.822636
[5] Mnaouer, A. B., Chen, L., Foh, C. H., Tantra, J. W., “OPHMR: An Optimized
Polymorphic Hybrid Multicast Routing Protocol for MANET,” IEEE Transactions on Mobile
Computing, Vol. 6, No. 5, pp. 551-562, May 2007. http://dx.doi.org/10.1109/TMC.2007.1030
[6] Dai, F., Wu, J., “Performance Analysis of Broadcast Protocols in Ad Hoc Networks Based
on Self-Pruning,” IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No. 11, pp.
1-13, November 2004. http://dx.doi.org/10.1109/TPDS.2004.69
[7] Saha, S., Hussain, S. R., Ashikur Rahman, A. K. M., “RBP: Reliable Broadcast Protocol
in Large Scale Mobile Ad Hoc Networks,” 24th IEEE International Conference on Advanced
Information Networking and Applications, pp. 526-532, Perth, WA, USA, April 20-23, 2010.
http://dx.doi.org/10.1109/AINA.2010.91
[8] Meghanathan, N., “Graph Theory Algorithms for Mobile Ad hoc Networks”, Informatica
- An International Journal of Computing and Informatics, Vol. 36, No. 2, pp. 185-200, June
2012.
[9] Meghanathan, N., Mumford, P., “A Benchmarking Algorithm to Determine the Sequence
of Stable Data Gathering Trees for Wireless Mobile Sensor Networks,” Informatica - An
International Journal of Computing and Informatics, Vol. 37, No. 3, pp. 315-338, Oct. 2013.
[10] Newman, M., Networks: An Introduction, 1st ed., Oxford University Press, May 2010.
[11] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to Algorithms, 3rd
ed., MIT Press, July 2009.
[12] Wan, P-J., Alzoubi, K. M., Frieder, O., “Distributed Construction of Connected
Dominating Set in Wireless Ad hoc Networks,” 21st IEEE International Conference on
Computer and Communications, Vol. 3, pp. 1597-1604, New York City, NY, USA, June
23-27, 2002. http://dx.doi.org/10.1109/INFCOM.2002.1019411
[13] Ni, S-Y., Tseng, Y-C., Chen, Y-S., Sheu, J-P., “The Broadcast Storm Problem in a Mobile
Ad hoc Network,” 5th Annual IEEE/ACM International Conference on Mobile Computing
and Networking, pp. 151-162, 1999, Seattle, WA, USA, August 15-20, 1999.
http://dx.doi.org/10.1145/313451.313525
[14] Butenko, S., Cheng, X., Oliveira, C. A., Pardalos, P. M., “A New Heuristic for the
Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks,” Recent

www.macrothink.org/npa 39

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Developments in Cooperative Control and Optimization Cooperative Systems, Vol. 3, pp.
61-73, 2004. http://dx.doi.org/10.1007/978-1-4613-0219-3_4
[15] Misra, R., Mandal, C., “Minimum Connected Dominating Set using a Collaborative
Cover Heuristic for Ad hoc Sensor Networks,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 21, No. 3, pp. 292-302, March 2010. http://dx.doi.org/10.1109/TPDS.2009.78
[16] Guha, S., Khuller, S., “Approximation Algorithms for Connected Dominating Sets,”
Algorithmica, Vol. 20, No. 4, pp. 374-387, April 1998. http://dx.doi.org/10.1007/PL00009201
[17] King, L., Meghanathan, N., “A Weighted-Density Connected Dominating Set Data
Gathering Algorithm for Wireless Sensor Networks,” Journal of Computer and Information
Science, Vol. 2, No. 4, pp. 3-13, November 2009. http://dx.doi.org/10.5539/cis.v2n4p3
[18] Das, A., Mandal, C., Reade, C., Aasawat, M., “An Improved Greedy Construction of
Minimum Connected Dominating Sets in Wireless Networks,” IEEE Wireless
Communications and Networking Conference, pp. 790-795, March 28-31, 2011, Cancun,
Mexico. http://dx.doi.org/10.1109/WCNC.2011.5779233
[19] Meghanathan, N., Farago, A., “On the Stability of Paths, Steiner Trees and Connected
Dominating Sets in Mobile Ad Hoc Networks,” Ad hoc Networks, Vol. 6, No. 5, pp. 744-769,
July 2008. http://dx.doi.org/10.1016/j.adhoc.2007.06.005
[20] Meghanathan, N., “Node Stability Index: A Stability Metric and an Algorithm to
Determine Long-Living Connected Dominating Sets for Mobile Ad hoc
Networks,” International Journal of Interdisciplinary Telecommunications and Networking,
Vol. 4, No. 1, pp. 31-46, January-March 2012. http://dx.doi.org/10.4018/jitn.2012010102
[21] Meghanathan, N., Terrell, M., “A Simulation Study on the Strong Neighborhood-based
Stable Connected Dominating Sets for Mobile Ad hoc Networks,” International Journal of
Computer Networks and Communications, Vol. 4, No. 4, pp. 1-19, July 2012.
http://dx.doi.org/10.5121/ijcnc.2012.4401
[22] Meghanathan, N., “A Simulation-based Performance Comparison of the Minimum Node
Size and Stability-based Connected Dominating Sets for Mobile Ad hoc
Networks,” International Journal of Computers and Network Communications, Vol. 4, No. 2,
pp. 169-184, March 2012. http://dx.doi.org/10.5121/ijcnc.2012.4211
[23] Strang, G., Linear Algebra and its Applications, 4th ed., Cengage Learning, July 2005.
[24] Bettstetter, C., Hartenstein, H., Perez-Costa, X., “Stochastic Properties of the
Random-Way Point Mobility Model,” Wireless Networks, Vol. 10, No. 5, pp. 555-567,
September 2004. http://dx.doi.org/10.1023/B:WINE.0000036458.88990.e5
[25] N. Meghanathan, “Correlation Coefficient Analysis of Centrality Metrics for Complex
Network Graphs,” 4th Computer Science Online Conference, Intelligent Systems in
Cybernetics and Automation Theory: Advances in Intelligent Systems and Computing, Vol.
348, pp. 11-20, April 27-30, 2015. http://dx.doi.org/10.1007/978-3-319-18503-3_2

www.macrothink.org/npa 40

 Network Protocols and Algorithms
ISSN 1943-3581

2015, Vol. 7, No. 2

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

www.macrothink.org/npa 41

	Abstract

