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Abstract 

We propose a generic algorithm to determine maximum bottleneck node weight-based data 
gathering (MaxBNW-DG) trees for wireless sensor networks (WSNs) and compare the 
performance of the MaxBNW-DG trees with those of maximum and minimum link 
weight-based data gathering trees (MaxLW-DG and MinLW-DG trees). Assuming each node 
in a WSN graph has a weight, the bottleneck weight for the path from a node u to the root 
node of the DG tree is the minimum of the node weights on the path (inclusive of the weights 
of the end nodes). The MaxBNW-DG tree algorithm determines a DG tree such that each 
node has a path of the largest bottleneck weight to the root node. We observe the 
MaxBNW-DG trees to incur lower height, larger percentage of nodes as leaf nodes and a 
larger weight per intermediate node compared to the leaf node; the tradeoff being a larger a 
network-wide data aggregation delay due to larger number of child nodes per intermediate 
node. The MaxBNW-DG algorithm could be used to determine DG trees with larger trust 
score, larger energy (and other such criterion for node weight) per intermediate node 
compared to the leaf node.   

Keywords: Data Gathering Trees, Wireless Sensor Networks, Bottleneck Node Weight 

 

1. Introduction  

A Wireless Sensor Network (WSN) is a network of autonomous sensor nodes that can 
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typically sense/measure one or more environmental parameters of interest such as pressure, 
temperature, humidity, etc and forward the sensed data to a control center called the sink. The 
sensor nodes are battery charged and operate at a limited transmission range to conserve 
energy as well as to reduce interference occurring due to simultaneous transmissions across 
the shared wireless medium. It would consume a significant amount of energy in the network 
if each of the sensor nodes attempt to directly transmit their data to the sink, leading to 
premature node failures. Hence, sensor nodes typically forward their data along a specialized 
communication topology (like cluster [1], grid [2-3], chain [4], tree [5], connected 
dominating set [6], etc) and data (from the various nodes) gets aggregated as it propagates 
through this topology. Several articles have been published (e.g., [5]) comparing the 
performance of these different communication topologies for data gathering. Most of the 
work available in the literature focus on determining communication topologies that 
minimize the energy consumption at the sensor nodes and prolong the network lifetime 
(typically, defined as the time the network gets disconnected due to the failure of one or more 
nodes that run out of energy). In [5] and other related works (e.g., [7-8]), data gathering trees 
(DG trees) have been observed to be the most energy-efficient among these topologies, as the 
links of the DG trees typically span over a shorter distance and the number of links involved 
in the transmission and reception of data are to the bare minimum, but still span across all the 
nodes.   

The algorithms proposed until now for DG trees focus on using a specific attribute such 
as the residual (available) energy of a node [9], link distance [10], link expiration time [10], 
node degree [11], etc as the underlying criterion to determine the trees and thereby evaluate 
the effectiveness of these criterion to minimize energy consumption and maximize network 
lifetime. Though a slew of such algorithms (based on a specific node or link selection 
criterion) are available in the literature, we could not come across a generic algorithm that 
could determine a maximum bottleneck node weight-based DG tree (MaxBNW-DG tree). 
Assuming the WSN is modeled as a weighted graph (each node has a weight), we define the 
bottleneck weight for a path from any node to the root node in a DG tree as the minimum of 
the node weights on the path (including the weights of the end nodes of the path). The 
MaxBNW-DG tree is a DG tree in which every node is located on a path of the largest 
bottleneck weight to the root node.  

To the best of our knowledge, we have not come across in the literature a generic 
algorithm that can determine a maximum bottleneck node weight-based DG tree for a WSN 
graph with node weights. Given that the root node of a MaxBNW-DG tree is the node with 
the largest weight, we hypothesize a MaxBNW-DG tree to connect every other node on the 
shortest path to the root node (due to the need to be connected to the root node on a path of 
larger bottleneck node weight, the fewer the intermediate nodes on the path, the larger the 
chances of finding a path with a larger bottleneck node weight value) as well as distribute the 
nodes in such a way that the intermediate nodes are more likely to be of a larger weight 
compared to that of the leaf nodes, resulting in the average weight per intermediate node to 
be greater than the average weight per leaf node. Also, we hypothesize a MaxBNW-DG tree 
to have fewer intermediate nodes (due to the need for connecting all the nodes on paths of 
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largest bottleneck weight to the root node) and incur a significantly larger number of leaf 
nodes (and thereby contribute towards reduced overall energy consumption).  

A generic algorithm to determine MaxBNW-DG trees could have several applications. 
For example, as shown in this paper, if each node in a WSN has a trust score (such that larger 
the trust score for a node, the more reliable is the node), the MaxBNW-DG tree algorithm 
could be used to construct a DG tree such that the intermediate nodes of the tree are more 
likely to have a larger trust score than the leaf nodes of the tree. This way, an intermediate 
node could simply discard data emanating from leaf nodes that have a lower trust score and 
there will not be any appreciable loss of information as part of network-wide data aggregation 
(on the other hand, it would lead to appreciable loss of information if aggregated data 
originating from an intermediate node with a lower trust score is discarded by a node higher 
up in the DG tree). The only way a node u with a lower trust score could become an 
intermediate node is when none of its neighbor nodes are in the neighborhood of nodes that 
have a path of relatively larger bottleneck weight to the root node compared to the bottleneck 
weight of the path from node u to the root. Likewise, the MaxBNW-DG tree algorithm could 
be used to determine energy-aware data gathering trees such that the average residual energy 
per intermediate node is larger than the average residual energy per leaf node.  

Our contributions in this paper are as follows: We propose a generic algorithm to 
determine maximum bottleneck node weight-based data gathering trees in which a node u 
serves as an intermediate node only if none of its adjacent nodes have neighbor nodes of 
relatively larger bottleneck weight path to the root node compared to the bottleneck weight of 
the path from node u to the root. As case studies, we show that the proposed algorithm could 
be applied to determine MaxBNW-DG trees for network graphs in which the node weights 
are related to the link weights and the degree of the nodes as well as when the node weights 
are not related to the link weights and node degree. The results of our simulation studies 
show that in the case of MaxBNW-DG trees, the average weight per intermediate node is 
always greater than the average weight per leaf node, irrespective of the number of 
intermediate nodes and leaf nodes in the trees. We observe that the average height of a 
MaxBNW-DG tree is far lower than that of a MaxLW-DG and MinLW-DG trees, whereas the 
delay for data aggregation incurred with a MaxBNW-DG tree is much larger than that of the 
link weight-based DG trees. Due to lower height, we also observe the MaxBNW-DG trees to 
involve the majority of the nodes as leaf nodes such that the percentage of nodes as leaf 
nodes in a MaxBNW-DG tree could be as large as twice the percentage of nodes as leaf nodes 
in a MaxLW-DG tree or a MinLW-DG tree. 

The rest of the paper is organized as follows: Section 2 presents the maximum bottleneck 
node weight-based data gathering tree algorithm, illustrates its execution with an example, 
evaluates its run-time complexity as well as demonstrates its proof of correctness. In Section 
3, we present algorithms to determine the maximum and minimum link weight-based data 
gathering trees and illustrate their execution with examples. Section 4 presents an algorithm 
used to compute the height and aggregation delay of a DG tree. Section 5 presents the results 
from two sets of simulation studies: the first set of studies compare the performance of the 
MaxBNW-DG trees and MaxLW-DG trees wherein the node weight is simply the sum of the 
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weights of the links, assigned randomly to each link; the second set of studies compare the 
performance of the MaxBNW-DG and MinLW-DG trees wherein the node weights and link 
weights are not related (node weight is the energy of a node, a randomly assigned value, and 
the link weight is the square of the Euclidean distance between the end nodes of the link). 
Section 6 discusses about modifying the proposed generic algorithm to determine minimum 
bottleneck node-weight based data gathering trees (MinBNW-DG trees) wherein the 
bottleneck weight of a path is defined as the maximum of the node weights and the focus 
would be to determine a DG tree for which the path from any node to the root node has the 
minimum bottleneck weight. Section 7 presents related work and discusses how the proposed 
generic algorithms for maximum and minimum bottleneck node weight-based data gathering 
trees could be applied to determine data gathering trees that have a larger node weight for the 
intermediate nodes (maximum bottleneck node weight-based DG trees) or lower node weight 
for the intermediate nodes (minimum bottleneck node weight-based DG trees) based on 
various criteria for node weights considered in the literature. Section 8 concludes the paper. 
Throughout the paper, we use the terms 'data gathering' and 'data aggregation' as well as the 
terms 'edge' and 'link, 'node' and 'vertex' interchangeably. They mean the same. 

 

2. Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data 
Gathering Trees  

2.1 System Model 

The wireless sensor network (WSN) is assumed to be modeled as a weighted graph G = 
(V, E, WV, WE), where V is the set of vertices that are connected by a set E of edges and WV 
and WE represent the set of weights (positive real numbers) for the vertices and edges 
respectively (one weight per vertex and one weight per edge). The node weights may or may 
not be related to the link weights. If two or more nodes (likewise, two or more links) have the 
same weight, we arbitrarily break the ties. Each node in the WSN is represented by a vertex 
in the graph and the transmission range of all nodes is identical to each other. We assume that 
two vertices are connected with an edge if the Euclidean distance between the corresponding 
nodes in the network is less than or equal to the transmission range of the nodes. A data 
gathering (DG) tree is a rooted spanning tree (the root node is called the leader node) and 
data aggregation proceeds from the leaf node through the intermediate nodes all the way to 
the leader node. An intermediate node in the DG tree has to wait to receive aggregated data 
(or individual data if the child node is a leaf node) from each of its immediate child nodes, 
aggregates all the data with its own data and forwards the final aggregated data to its own 
upstream node in the DG tree. We assume the sensor nodes to operate with sufficient energy 
throughout the data aggregation session so that there are no node failures due to energy 
exhaustion and the best possible performance could be extracted from the benchmarking 
algorithms with respect to the metrics that they are designed to optimize. With regards to 
channel access, we assume the sensor nodes to be both CDMA (Code Division Multiple 
Access) and TDMA (Time Division Multiple Access)-enabled [12-13]. An intermediate node 
assigns unique TDMA time slots to each of its immediate child nodes so that it receives 
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aggregated data from at most one child node during a time slot. There could be simultaneous 
data aggregation using different CDMA codes at two intermediate nodes that are at the same 
level or different levels of the DG tree. Two intermediate nodes at the same level or different 
levels of the DG tree could simultaneously aggregate data from their respective child nodes 
using different CDMA codes.  

2.2 Description of the MaxBNW-DG Algorithm 

We define the bottleneck weight of a path as the minimum of the node weights along the 
path (including the weights of the end nodes). The MaxBNW-DG algorithm (pseudo code in 
Figure 1) is based on the hypothesis that by accommodating nodes with larger weights as 
intermediate nodes, one could determine a DG tree wherein each node could join the tree 
through an upstream node that has the largest bottleneck weight path to the root node. For 
each node, we refer to the bottleneck weight of the path connecting the node to the root node 
of the DG tree as the Tree-join-weight of the node. The algorithm maintains three lists as part 
of its execution: Candidate-Nodes-List, Optimized-Nodes-List and Parent-Node-List. The 
Candidate-Nodes-List is maintained as a maximum heap (priority queue) [14] and it contains 
the Estimated-join-weights of the nodes that are yet to be included in the DG tree. The 
Estimated-join-weight of a node is an estimate of the largest bottleneck weight path of the 
node to the root node. The Parent-Node-List maintains the predecessor node (immediate 
upstream node) for each node in the DG tree and is updated whenever a node has found an 
upstream node through which it can join the tree on a path whose bottleneck weight is larger 
than the currently know bottleneck weight of the path to the root node. 

We designate the node with the largest individual weight as the leader node and include it 
in the Candidate-Nodes-List and set its Estimated-join-weight to the weight of the node itself. 
The Estimated-join-weight of every other node is initialized to -1 and the algorithm seeks to 
improve it in each iteration as much as possible. In each iteration, the algorithm removes the 
node with the largest Estimated-join-weight from the Candidate-Nodes-List and includes it to 
the Optimized-Nodes-List (i.e., one node is optimized per iteration); the Tree-join-weight of 
the node is set to the value of the Estimated-join-weight at the time of its removal from the 
Candidate-Nodes-List and inclusion to the Optimized-Nodes-List. Further, we explore the 
neighborhood of the optimized node (say, node u) and see if it could become the predecessor 
node for any of its neighbors (say, node v) that are yet to be optimized. If the 
Estimated-join-weight of a neighbor node v could be improved, we set it to the minimum of 
the Estimated-join-weight of node u and the individual weight of node v, set node u as the 
predecessor node for node v as well as include node v in the Candidate-Nodes-List (if node v 
is not yet in the Candidate-Nodes-List). We run the iterations until the Candidate-Nodes-List 
gets empty. If all the nodes are optimized by then, it means the algorithm has determined a 
DG tree spanning all the nodes and returns the set of edges connecting a node with its 
predecessor node. If there are one or more nodes that are yet to be optimized and the 
Candidate-Nodes-List has already become empty, it means the underlying network graph is 
not connected and the algorithm returns NULL. 
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-------------------------------------------------------------------------------------------------------------------------------- 
Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BNW

Max EVT  where ET is the set of edges in the MaxBNW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 
          Estimated-join-weight, Tree-join-weight, Leader Node 
Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 
        Vu∈∀ : Estimated-join-weight(u) = -1, Tree-join-weight(u) = -1 
Begin MaxBNW-DG Algorithm 

1 Leader Node s = {u | ))(( uWMaximum VVu∈
} 

2 Parent-Node-List(s) = NULL 
3 Candidate-Nodes-List = Candidate-Nodes-List ∪ {s} 
4 Estimated-join-weight(s) = WV(s) 
5 while (Candidate-Nodes-List ≠ ϕ) do 

6  Node u = {i | 
ListNodesCandidatei

Maximum
−−∈

(Estimated-join-weights(i)} 

7  Candidate-Nodes-List = Candidate-Nodes-List - {u} 
8  Optimized-Nodes-List = Optimized-Nodes-List ∪ {u} 
9  Tree-join-weight(u) = Estimated-join-weight(u) 
10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 
11   if (Estimated-join-weight(v) < Minimum(WV(v), Tree-join-weight(u) ) ) then 
12    Estimated-join-weight(v) = Minimum(WV(v), Tree-join-weight(u) ) 
13    Candidate-Nodes-List = Candidate-Nodes-List ∪ {v} 
14    Parent-Node-List(v) = u 
15   end if 
16  end for 
17 end while 
18 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | < | V | ) then 
19  return NULL; // the graph is not connected 
20 end if 
21 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | = | V | ) then 
22  for (Node u ∈V  AND u ≠ Leader Node ) do 
23        ET = ET ∪  {(u, Parent-Node-List(u))} 
24  end for 
25 end if 

26 return ),( T
BNW

Max EVT  

End MaxBNW-DG Algorithm 
------------------------------------------------------------------------------------------------------------------------------------- 

Figure 1: Pseudo Code for the Algorithm to Determine Maximum Bottleneck Node Weight-DG Trees 
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2.3 Time-Complexity of the MaxBNW-DG Algorithm 

It takes Θ(|V|) time to determine the leader node among the nodes in the network (on the 
basis of the individual node weights), where V is the set of all the vertices in the WSN graph 
and the initialization to the auxiliary variables can be done in constant time. Hence, lines 1-4 
take Θ(|V|) time. Since we implement the Candidate-Nodes-List as a maximum heap [14], it 
takes Θ(log|V|) time to remove the root of the heap (i.e., the root is the node with the largest 
Estimated-join-weight among the nodes in the Candidate-Nodes-List). Lines 10-15 explore 
the neighborhood of a particular vertex in each iteration; overall, this amounts to visiting the 
edges of the graph twice - once for each of the end vertices of an edge to examine whether 
their Estimated-join-weight could be increased; if the Estimated-join-weight for a node gets 
changed, then the Candidate-Nodes-List (maximum heap) has to be re-heapified to restore the 
heap property. It takes Θ(log|V|) to re-heapify a heap once [14]; lines 10-15 are executed a 
total of 2*|E| times; hence, the time-complexity for lines 10-15 is Θ(|E|*log|V|). It takes Θ(|V|) 
time (lines 21-23) to go through the Parent-Node-List for all the nodes and come up with the 
set of edges (ET) for the MaxBNW-DG tree. Considering the above-said time complexities 
involved in different stages of the algorithm, we could say the overall time complexity of the 
MaxBNW-DG algorithm is: Θ(|V|) for lines 1-4 + Θ(|E|*log|V|) for lines 10-15 + Θ(|V|) for 
lines 21-23 = Θ(|V| + |E|*log|V|).   

2.4  Proof of Correctness 

Lemma 1: The Tree-join-weight of any vertex v cannot be more than its individual weight, 
WV(v). 

Proof: Consider a vertex v that is not yet included in the Optimized-Nodes-List. During 
each of the iterations in which vertex v is a neighbor node of a vertex u being optimized (in 
lines 11-12 of the MaxBNW-DG algorithm), we explore whether the Estimated-join-weight 
of the vertex v can be improved by comparing it with the minimum of the Tree-join-weight of 
the neighbor node u being optimized for that iteration and the individual weight of node v, 
WV(v). In each such iterations, WV(v) is one of the two arguments used to evaluate the 
minimum. Hence, the Estimated-join-weight of vertex v cannot be above its individual weight 
WV(v). With that said, at the time of its removal from the Candidate-Nodes-List and inclusion 
to the Optimized-Nodes-List, the Tree-join-weight of vertex v cannot be more than its 
individual weight, WV(v).  

Lemma 2: The Tree-join-weight of the vertices added to the Optimized-Nodes-List are in 
the non-increasing order.  

Proof: Consider two vertices u and u' such that u gets added to the Optimized-Nodes-List 
during some iteration(s) before the inclusion of node u' to the Optimized-Nodes-List. As per 
this lemma, Tree-join-weight(u') ≤ Tree-join-weight(u). We prove this by contradiction. Let 
Tree-join-weight(u')>Tree-join-weight(u), but still vertex u gets added to the 
Optimized-Nodes-List ahead of vertex u'. In other words, at the time when node u was 
optimized, its Tree-join-weight should have been greater than that of node u'; but, after the 
optimization of node u, the Estimated-join-weight of node u' should have increased beyond 
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the Tree-join-weight of node u. This would be possible only if one or more descendants of 
node u or nodes optimized after node u had a Tree-join-weight larger than that of node u. 
Since we only take the minimum of the Tree-join-weight of a parent node and the individual 
weight of the child node while trying to update the Estimated-join-weight of a child node 
(lines 11-12 in Figure 1) , the Tree-join-weight of a child node can be only at most the 
Tree-join-weight of the parent node. Hence, it would not be possible for the descendants of 
node u to cause the Estimated-join-weight of node u' to increase beyond the Tree-join-weight 
of node u. The other possibility is that there existed a node (say, node x) that was optimized 
after node u and the Tree-join-weight of node x contributed to the increase in the 
Estimated-node-weight of node u'. Nevertheless, given that node x was optimized after node u, 
the Tree-join-weight of node x can be only at most the Tree-join-weight of node u (otherwise, 
node x would have been optimized before node u) and also the Tree-join-weights of the 
descendants of node x on a path leading to node u' can be also only at most the 
Tree-join-weight of node x, which could in turn be at most the Tree-join-weight of node u. 
Thus, if node u' were to be optimized some iteration(s) after node u, the Tree-join-weight(u') 
≤ Tree-join-weight(u) and not the other way around. 

Theorem: For each node, there exists a path of the largest bottleneck weight to the root 
node in the MaxBNW-DG tree.  

Proof: We prove by contradiction. Assume that there exists a node v whose bottleneck 
weight for the path P to the root node (determined by the MaxBNW-DG algorithm) is less 
than the bottleneck weight for a different path P' (from node v to the root node) that exists in 
the graph, but not found by the MaxBNW-DG algorithm. We will now explore whether such 
a hypothetical path P' can exist. There should be at least one intermediate node (say, node z) 
on the path P' that was not yet optimized by the MaxBNW-DG algorithm at the time of 
optimizing the parent node u of v on the path P; because, if all the intermediate nodes on the 
path P' were optimized, then we would have identified the path P' as part of the neighborhood 
exploration steps of the MaxBNW-DG algorithm and chose P' over P (if P' had a larger 
bottleneck weight than P). From Lemma 2, the prospective Tree-join-weights of one or more 
intermediate nodes (like node z) that are not yet optimized (at the time of optimizing node u) 
and located in path P' had to be less than or equal to the Tree-join-weight of node u. Hence, 
even if the intermediate node z of lower Estimated-join-weight was optimized after the 
optimization of node u, the Tree-join-weight of node z would be less than or equal to the 
Tree-join-weight of node u and consequently, the Tree-join-weights of the downstream nodes 
of node z leading to node v on the path P' could only get even smaller than the 
Tree-join-weight of node u, resulting in the bottleneck weight of path P' to be less than or 
equal to the bottleneck weight of path P. This is a contradiction to our assumption. Thus, the 
paths found by the MaxBNW-DG algorithm from each of the vertices to the root node are the 
ones with the largest bottleneck weights.  

2.5 Example 

Figure 2 presents an example illustrating the execution of the MaxBNW-DG algorithm. 
The link weights are randomly generated; the individual weight of a node is the sum of the 
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weights of its adjacent links and is shown inside the node circles that also have the node's ID. 
The Estimated-join-weights of the nodes are shown outside the node circles. As node 2 has 
the largest individual node weight, it is the root node (leader node) of the MaxBNW-DG tree 
and its Tree-join-weight is set to its node weight itself. The Estimated-join-weights of the 
other vertices are set to -1. We show the sequence of iterations (a total of 8 iterations on a 
graph of 8 vertices), with a node optimized per iteration, and the resulting changes in the 
Estimated-join-weights and Tree-join-weights of the vertices. In each iteration, we optimize 
the vertex with the largest Estimated-join-weight among the vertices that are yet to be 
optimized and set its Tree-join-weight to the Estimated-join-weight as well as explore 
whether the Estimated-join-weights of its neighbors (that are not yet optimized) could be 
improved.   

      
          WSN Graph                    Initialization                      Iteration 1 

      

           Iteration 2                      Iteration 3                      Iteration 4 

      
           Iteration 5                      Iteration 6                      Iteration 7 

                             
          Iteration 8                                  Maximum Bottleneck Weight-based DG Tree 

Figure 2: Example to Illustrate the Execution of the Algorithm to Determine Maximum Bottleneck Node 
Weight-based Data Gathering Tree 
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We can see that lemmas 1 and 2 as well as the theorem proving the correctness of the 
MaxBNW-DG algorithm (all explained in Section 2.4) stand vindicated in the example. The 
Tree-join-weight of any node is at most the individual weight of the node (Lemma 1); the 
Tree-join-weights of the sequence of vertices being optimized are in the non-decreasing order 
(2.02, 1.69, 1.69, 1.68, ..., 0.37; Lemma 2). Comparing the original graph with the final 
MaxBNW-DG tree, we could also confirm that each node is connected to the root/leader node 
(node 2) on a path of the largest bottleneck weight (including the weights of the end nodes of 
the path); there exists no other paths (from the individual nodes to the root node) of 
bottleneck weight larger than those determined by the algorithm (Theorem). 

3. Algorithms to Determine Maximum and Minimum Link Weight-based Data 
Gathering Trees  

In this section, we present the algorithms that could be used to determine maximum and 
minimum link-weight-based data gathering trees. A maximum link weight-based DG tree 
(MaxLW-DG tree) is the one in which the sum of the weights of the links is the maximum. In 
pursuit of an optimal solution, the MaxLW-DG tree algorithm prefers to include links of 
relatively larger weight as part of the DG tree. Hence, the MaxLW-DG tree algorithm could 
be used for applications in which links of larger weight are preferred for inclusion in a DG 
tree (for example, the algorithm could be used to construct DG trees whose constituent links 
have a larger trust score). A minimum link-weight based DG tree (MinLW-DG tree) is the one 
in which the sum of the link weights is the minimum. MinLW-DG trees tend to include links 
of relatively lower weight; applications of the MinLW-DG trees could be to determine DG 
trees whose constituent links undergo reduced energy loss during transmission such that the 
overall energy loss due to transmission across all the links is minimum. 

Figure 3 presents the pseudo code of the MaxLW-DG tree algorithm. We maintain the 
same auxiliary structures as those used by the MaxBNW-DG algorithm with their definitions 
slightly changed: The Tree-join-weight for a node is the maximum of the weights of the 
incident links through which a node can join the DG tree. The Estimated-join-weight for a 
node is the estimate of the optimal (maximum) weight of the link through which the node can 
join the DG tree. The usage of the rest of the auxiliary variables (like the 
Candidate-Nodes-List, Optimized-Nodes-List, Parent-Node-List) are the same as that of the 
MaxBNW-DG tree algorithm. The Candidate-Nodes-List is maintained as a maximum heap, 
based on the Estimated-join-weights of the vertices. In each iteration, we remove the vertex 
with the largest Estimated-join-weight among the vertices in the Candidate-Nodes-List and 
add to the Optimized-Nodes-List as well as explore its neighbors. For a vertex v that is a 
neighbor node of a vertex u being optimized in a particular iteration, we check if the current 
Estimated-join-weight of node v is less than the weight of the link (u, v); if so, we update 
Estimated-join-weight of node v to the weight of the link (u, v) and set node u as the parent 
for node v. We start with an arbitrarily selected node as the root node and set its 
Estimated-join-weight (that is also its Tree-join-weight) to ∞, while the Estimated-join-weight 
of the other vertices is set to -1; in each iteration, we attempt to increase the 
Estimated-join-weights of the vertices (that are not yet in the Optimized-Node-List) as much 
as possible when the neighborhood of the vertices that are being optimized is explored.  
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------------------------------------------------------------------------------------------------------------------------------- 
Input: Graph G = (V, E, WV, WE) 

Output: ),( T
LW

Max EVT  where ET is the set of edges in the MaxLW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 
          Estimated-join-weight, Tree-join-weight, Leader Node 
Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 
            Vu∈∀ : Estimated-join-weight(u) = -1, Tree-join-weight(u) = -1 
Begin MaxLW-DG Algorithm 
1 Leader Node s is arbitrarily chosen among the vertices in V 
2 Parent-Node-List(s) = NULL 
3 Candidate-Nodes-List = Candidate-Nodes-List ∪ {s} 
4 Estimated-join-weight(s) = ∞ 
5 while (Candidate-Nodes-List ≠ ϕ) do 

6  Node u = {i | 
ListNodesCandidatei

Maximum
−−∈

(Estimated-join-weights(i)} 

7  Candidate-Nodes-List = Candidate-Nodes-List - {u} 
8  Optimized-Nodes-List = Optimized-Nodes-List ∪ {u} 
9  Tree-join-weight(u) = Estimated-join-weight(u) 
10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 
11   if (Estimated-join-weight(v) < WE(u-v)) then 
12    Estimated-join-weight(v) = WE(u-v) 
13    Parent-Node-List(v) = u 
14   end if 
15  end for 
16 end while 
17 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | < | V | ) then 
18  return NULL; // the graph is not connected 
19 end if 
20 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | = | V | ) then 
21  for (Node u ∈V  AND  u ≠ Leader Node ) do 
22        ET = ET ∪  {(u, Parent-Node-List(u))} 
23  end for 
24 end if 

25 return ),( T
LW

Max EVT  

End MaxLW-DG Algorithm 

------------------------------------------------------------------------------------------------------------------------------- 

Figure 3: Pseudo Code for the Algorithm to Determine Maximum Link Weight-based DG Trees 

 

Figure 4 presents an example (same graph as in Figure 2) to illustrate the construction of 
MaxLW-DG trees, starting from node 2 as the root node (to be consistent with the example 
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illustration for MaxBNW-DG trees). The Estimated-join-weight of the root node is set to a 
very large value of 1000 (equivalent to setting the value to ∞) and Estimated-join-weight of 
the other vertices is set to -1. In each iteration, we optimize the node with the largest 
Estimated-join-weight value (also set as the node's Tree-join-weight value) and explore its 
neighbors; we increase the Estimated-join-weight of a neighbor node if it is currently less 
than the weight of the edge connecting the neighbor node to the node being optimized during 
that iteration. Unlike the MaxBNW-DG algorithm, we do not observe a monotonically 
decreasing sequence of the values of the Tree-join-weights of the nodes optimized. Also, we 
can notice that the Tree-join-weight of any node need not be the maximum of the weights of 
the links incident on the node.  

     

          WSN Graph                    Initialization                      Iteration 1 

      
           Iteration 2                      Iteration 3                      Iteration 4 

      
           Iteration 5                      Iteration 6                      Iteration 7 

                            
          Iteration 8                                  Maximum Link Weight-based DG Tree 
Figure 4: Example to Illustrate the Execution of the Algorithm to Determine Maximum Link Weight-based Data 

Gathering Tree 

Figure 5 presents the pseudo code for the MinLW-DG tree algorithm. Here, the 
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Tree-join-weight for a node is the minimum of the weights of the incident links through 
which a node can join the tree; the Estimated-join-weight for a node is the estimate of the 
optimal (minimum) weight of the link through which a node can join the DG tree. The 
Candidate-Nodes-List is maintained as a minimum heap, based on the Estimated-join-weight 
of the vertices. We start with an arbitrarily chosen node as the root node whose 
Estimated-join-weight is set to -∞ and the Estimated-join-weight of the other vertices is set to 
∞. In each iteration of the algorithm, we attempt to reduce the Estimated-join-weight of the 
vertices (other than the root node) as much as possible. In each iteration, we remove the 
vertex with the smallest Estimated-join-weight among the vertices in the 
Candidate-Nodes-List and add to the Optimized-Nodes-List as well as explore its neighbors. 
For a vertex v that is a neighbor node of a vertex u that is currently being optimized during an 
iteration, we reduce Estimated-join-weight of node v if it is larger than the weight of the link 
(u, v) and set the Estimated-join-weight of node v to the weight of the link (u, v).  
---------------------------------------------------------------------------------------------------------------------------------- 
Input: Graph G = (V, E, WV, WE) 

Output: ),( T
LW

Min EVT  where ET is the set of edges in the MinLW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 
            Estimated-join-weight, Tree-join-weight, Leader Node 
Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 
        Vu∈∀ : Estimated-join-weight(u) = ∞, Tree-join-weight(u) = ∞ 
Begin MinLW-DG Algorithm 
1 Leader Node s is arbitrarily chosen among the vertices in V 
2 Parent-Node-List(s) = NULL 
3 Candidate-Nodes-List = Candidate-Nodes-List ∪ {s} 
4 Estimated-join-weight(s) = -∞ 
5 while (Candidate-Nodes-List ≠ ϕ) do 

6  Node u = {i | 
ListNodesCandidatei

Minimum
−−∈

(Estimated-join-weights(i)} 

7  Candidate-Nodes-List = Candidate-Nodes-List - {u} 
8  Optimized-Nodes-List = Optimized-Nodes-List ∪ {u} 
9  Tree-join-weight(u) = Estimated-join-weight(u) 
10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 
11   if (Estimated-join-weight(v) > WE(u-v)) then 
12    Estimated-join-weight(v) = WE(u-v) 
13    Parent-Node-List(v) = u 
14   end if 
15  end for 
16 end while 
17 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | < | V | ) then 
18  return NULL; // the graph is not connected 
19 end if 
20 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | = | V | ) then 
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21  for (Node u ∈V  AND u ≠ Leader Node ) do 
22        ET = ET ∪  {(u, Parent-Node-List(u))} 
23  end for 
24 end if 

25 return ),( T
LW

Min EVT  

End MinLW-DG Algorithm 
------------------------------------------------------------------------------------------------------------------------------------ 

Figure 5: Pseudo Code for the Algorithm to Determine Minimum Link Weight-based DG Trees 

      
          WSN Graph                    Initialization                      Iteration 1 

      
           Iteration 2                      Iteration 3                      Iteration 4 

      
           Iteration 5                      Iteration 6                      Iteration 7 

                          
          Iteration 8                                  Minimum Link Weight-based DG Tree 

Figure 6: Example to Illustrate the Execution of the Algorithm to Determine Minimum Link Weight-based Data 
Gathering Tree 

Figure 6 presents an example to illustrate the execution of the MinLW-DG tree algorithm 
on the same graph that was used to illustrate the execution of the MaxBNW-DG and 
MaxLW-DG algorithms. We use the same root node (node 2) with its initial weight set to 0 
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(given that the link weights > 0, no other node could ever have a Tree-join-weight value of 0) 
and set the Estimated-join-weight for the other nodes to be 1000 (in lieu of ∞).  

In each iteration, we seek to decrease the Estimated-join-weight of the nodes as much as 
possible; we consider the vertex with the lowest Estimated-join-weight (among the vertices 
that are yet to be optimized) to have been optimized and set its Tree-join-weight to the 
Estimated-join-weight as well as attempt to decrease the Estimated-join-weight of each of its 
neighbor nodes (that are yet to be optimized) if the edge connecting the node with the 
neighbor node is of a weight lower than the currently known Estimated-join-weight of the 
neighbor node. Similar to the example in Figure 4, the Tree-join-weights of the vertices 
optimized over the sequence of iterations do not monotonically increase or decrease. Also, 
the Tree-join-weight of a node need not be the minimum of the weights of the links incident 
on the node. We observe the MinLW-DG tree obtained in Figure 6 to be different from the 
MaxLW-DG tree obtained in Figure 4 and the MaxBNW-DG tree in Figure 2 even though all 
the three algorithms were run on the same graph. 

4. Algorithm to Determine the Height of the DG Tree and Delay for Data Aggregation  

In this section, we describe a benchmarking algorithm [15] to determine the delay for data 
aggregation spanning over all the nodes of the data gathering (DG) tree. We first identify the 
level of each node in the DG tree, with the root node (leader node) set to be at level 0, its 
immediate child nodes at level 1 and so on. Two different intermediate nodes at a particular 
level can simultaneously communicate with their respective child nodes at the same time 
using different CDMA (Code Division Multiple Access) codes [12] to avoid any interference; 
an intermediate node could only communicate sequentially with its immediate downstream 
nodes using TDMA (Time Division Multiple Access) time slots (one data aggregation per 
time unit).  

Figure 7 illustrates the pseudo code for an algorithm to compute the height of the data 
gathering tree, using the MaxBNW-DG tree as reference. The algorithm can be used to 
determine the height of any data gathering tree rooted at a particular node. We perform 
Breadth First Search (BFS) [14] on the edges of the DG tree to determine the height of the 
tree as well as the level (distance) of the vertices from the root node of the tree. As part of this 
procedure, we use the auxiliary variables, Neighbor-List storing the neighbors of each of the 
vertices in the DG tree; Nodes-Explored storing the list of nodes whose neighborhood is 
already explored as part of BFS; Candidate-Nodes-List containing the list of nodes 
(maintained in a First-in First-out basis; the front vertex in the list is extracted using a 
dequeue operation) that are visited while exploring the neighborhood of some other vertices, 
but their own neighborhood is not yet explored; and Node-Level that stores the level (distance) 
of a node from the root node of the DG tree. In addition to the Height of the DG tree, the 
algorithm outputs the Child-Nodes-List that contains the list of child nodes (if any) for each 
node in the DG tree and a two-dimensional data structure referred to as Nodes-At-Levels that 
stores a list of nodes at each level of the DG tree. The Node-Level for the leader node is 0. In 
each iteration of the BFS algorithm, we remove (dequeue) the vertex in the front of the 
Candidate-Nodes-List and add it to the Nodes-Explored list as well as explore its neighbors. 
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If a neighbor node v that has not been visited (explored) so far is visited for the first time as 
part of the exploration of the neighborhood of a node u, we add node v to the Nodes-Explored 
list as well as set Node-Level[v] = Node-Level[u] + 1 and set node u to be the parent node for 
node v in the DG tree. We also add node v to the list of nodes at level Node-Level[v]. If the 
value for Node-Level[v] is greater than the currently known height of the DG tree, we set the 
height of the tree to Node-Level[v], implying we have found a node that is farther away from 
the leader node of the DG tree. The complexity of the algorithm to determine the height of a 
DG tree is the complexity incurred with running the BFS algorithm on the V–1 edges of the 
DG tree spanning over all the |V| vertices of the graph. Hence, the complexity of the 
algorithm to determine the height of a DG tree is Θ(|V|). 

------------------------------------------------------------------------------------------------------------------------------ 

Input: DG Tree ),( T
BNW

Max EVT , Leader Node s 

Output: Height, Nodes-At-Levels, Child-Nodes-List 
Auxiliary Variables: Nodes-Explored; Candidate-Nodes-List, Child-Nodes-List;      
 Neighbor-List; Node-Level 
Initialization: Vi∈∀ : Neighbor-List[i] = ϕ, Node-Level[i] = 0; Child-Nodes-List[i] =  ϕ               
Nodes-At-Levels = ϕ; Height = 0; Nodes-Explored = ϕ; Candidate-Nodes-List = ϕ 
Begin Algorithm Height-DG Tree 
1 for (edge (u, v) ∈ET) do 
2  Neighbor-List[u] = Neighbor-List[u] ∪ {v} 
3  Neighbor-List[v] = Neighbor-List[v] ∪ {u} 
4 end for 
5 Candidate-Nodes-List = {s}  
6 Node-Level[s] = 0 
7 Nodes-At-Levels[0].add({s}) // adds the leader node s to the list of nodes at level 0 
8 while (Candidate-Nodes-List ≠ ϕ) do 
9  Node u = Dequeue(Candidate-Nodes-List) // removes u from Candidate-Nodes-List 
10  Nodes-Explored = Nodes-Explored ∪ {u} 
11  for ( Node v ∈Neighbor-List(u) AND v ∉Nodes-Explored) do 
12    Node-Level[v] = Node-Level[u] + 1 
13    Nodes-At-Levels[Node-Level[v]].add({v}) 
14    Child-Nodes-List(u) = Child-Nodes-List(u) ∪ {v}  
15    if (Height < Node-Level[v]) then 
16     Height = Node-Level[v] 
17    end if 
19  end for 
20 end while 
21 return Height, Nodes-At-Levels, Child-Nodes-List 
End Algorithm Height-DG Tree 
------------------------------------------------------------------------------------------------------------------------------- 

Figure 7: Pseudo Code for an Algorithm to Determine the Height of a Data Gathering Tree 
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Figure 8 presents the pseudo code that makes use of the height of the DG tree and the list 
of nodes at various levels of the tree to determine the delay for data aggregation. An 
intermediate node cannot forward an aggregated data to its upstream node unless it gets the 
aggregated data from all its immediate downstream child nodes. We assume it takes 1 time 
unit for a child node to send aggregated data to its parent node. We assume the leaf nodes of 
the DG tree (at all the levels) to have data readily available at time unit 0 (hence, the delay at 
any leaf node is 0). The delay at an intermediate node u, Delay[u], is iteratively computed 
over all its child nodes as shown in lines 6-8 of Figure 8 and explained here: We first sort the 
delays of the child nodes of u and maintain a Sorted-Delay-Child-Nodes[u]. We maintain a 
temporary estimate of the delay (initialized to zero) at the intermediate node u using a 
running variable Temp-Delay[u] that is incremented as follows for each child node of u 
considered in the increasing order of their delays: For a child node v ∈Child-Nodes-List[u], 
Temp-Delay[u] = Maximum(Temp-Delay[u] + 1, Delay[v] + 1), as we assume it takes one 
time unit for data to reach from a child node to the immediate parent node. The increment of 
the Temp-Delay[u] by 1 within the Maximum function takes into consideration scenarios 
when the delay at the child node v would be smaller than the Temp-Delay already computed 
at the parent node u due to data aggregation delays involving the siblings of node v (i.e., the 
other child nodes of node u). The delay associated with an intermediate node u, Delay[u], is 
the final value of Temp-Delay[u] after going through the delay-based sorted list of the child 
nodes of u.  

 
------------------------------------------------------------------------------------------------------------------------------ 
Input: Height, Nodes-At-Levels, Child-Nodes-List, Leader Node s 
Output: Delay[s] 
Auxiliary Variables: Temp-Delay; Sorted-Delay-Child-Nodes 
Initialization: Vi∈∀ : Delay[i] = 0, Temp-Delay[i] = 0, Sorted-Delay-Child-Nodes[i] = ϕ                
Begin Algorithm Aggregation-Delay-DG Tree 
1 for (Node-level = Height to 0) do   
2  for (Node u ∈Nodes-At-Levels.get(Node-level) ) do 
3   for (Node v ∈Child-Nodes-List[u]) do 
4    Insert (v, Delay[v]) at appropriate entry in Sorted-Delay-Child-Nodes[u] 
5   end for 
6   for (tuple (v, Delay[v]) in Sorted-Delay-Child-Nodes[u]) do 
7    Temp-Delay[u] = Maximum(Temp-Delay[u] + 1, Delay[v] + 1) 
8   end for 
9   Delay[u] = Temp-Delay[u] 
10  end for 
11 end for 
12 return Delay[s] 
End Algorithm Aggregation-Delay-DG Tree 
------------------------------------------------------------------------------------------------------------------------------- 

Figure 8: Pseudo Code for an Algorithm to Determine the Aggregation Delay of a Data Gathering Tree 
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The above procedure is repeated at all the intermediate nodes, including the leader node. 
The aggregation delay at the leader node is considered to be the aggregation delay of the 
entire DG tree. The overall complexity of the algorithm to compute the aggregation delay of a 
DG tree is dominated by the time incurred to sort the delays of the child nodes of the 
intermediate nodes at the different levels. At the worst case, an intermediate node could have 
the rest of the nodes as its child nodes and it would take Θ(|V|*log|V|) time to sort the delays 
of the |V|-1 child nodes. To calculate the Temp-Delay values and the delay at each of the 
nodes, we spend one time unit for each edge at its upstream node. Hence, the overall 
complexity of the algorithm to compute the aggregation delay of the DG tree is Θ(|V|*log|V|). 

 

  
    (a) MaxBNW-DG Tree       (b) MaxLW-DG Tree               (c) MinLW-DG Tree 

Figure 9: Height, Aggregation Delay and Percentage of Nodes as Leaf Nodes for the DG Trees 
 

Figure 9 illustrates the execution of the algorithms to determine the height and 
aggregation delay for the (a) MaxBNW-DG, (b) MaxLW-DG and (c) MinLW-DG trees 
determined in the examples illustrated in Figures 2, 4 and 6. The numbers inside the circles 
indicate the vertex ID, the numbers outside the circles indicate the aggregation delay at the 
nodes. We can observe the MaxBNW-DG tree to incur a combination of lower height and a 
larger percentage of nodes as leaf nodes compared to those incurred with the link 
weight-based DG trees. Also, in spite of the structural differences, the aggregation delay 
incurred for all the three DG trees in the example for Figure 9 is equal, which need not be the 
case all the time, as seen in the simulations.   

 

5. Simulations  

We conducted the simulations by implementing a discrete-event simulator in Java for 
wireless sensor networks. The network dimension is 100m x 100m and the number of nodes 
is 100. The transmission range of a sensor node is varied from 25m to 50m, in increments of 
5m. The number of nodes in the network is set to be 50 (moderate-high node density) and 100 
(high-very high node density) and are randomly distributed in the network. We implemented 
the algorithms for determining Maximum Bottleneck Node Weight-based data gathering, 
Maximum and Minimum link-weight based data gathering trees in a weighted WSN graph. 
We conduct two sets of simulations: The first set of simulations compare the performance of 
the MaxBNW-DG trees vis-a-vis the MaxLW-DG trees wherein the node weights and link 
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weights are considered to be related. The second set of simulations compare the performance 
of the MaxBNW-DG trees vis-a-vis the MinLW-DG trees wherein the node weights and link 
weights are considered to be not related. The performance metrics measured in each set of 
simulations include (for both sets of simulations): Height (Figures 11-a, 12-a, 14-a, 15-a, 18-a, 
19-a), Aggregation Delay (Figures 11-b, 12-b, 14-b, 15-b, 18-b, 19-b), Number of Child 
Nodes per Intermediate Node (Figures 11-c, 12-c, 14-c, 15-c, 18-c, 19-c) and Percentage of 
Nodes as Leaf Nodes (Figures 11-d, 12-d, 14-d, 15-d, 18-d, 19-d), Average Weight of the 
Internal Nodes and Average Weight of the Leaf Nodes for MaxBNW-DG vs. MaxLW-DG 
trees (Figures 13 and 20) and Average Energy of the Internal Nodes and Average Energy of 
the Leaf Nodes for MaxBNW-DG vs. MinLW-DG trees (Figure 16). Figure 10 displays (a) 
average connectivity (averaged over all the network graphs generated for both the sets of 
simulations) and (b) average number of neighbors per node (given by: πR2N/A, where R is the 
transmission range of the nodes, N is the number of nodes in the network and A is the 
network area) in networks of 50 and 100 nodes as a function of the different transmission 
ranges. 

   
            (a) Network Connectivity                      (b) Number of Neighbors per Node 

Figure 10: Average Network Connectivity and Average Number of Neighbors per Node 

5.1 Maximum Bottleneck Node Weight vs. Maximum Link Weight-based Data Gathering Trees 

For the first set of simulations, we set the link weights to be randomly distributed in the 
range [0...1]. The weight of a node is the sum of the weights of the links incident on it. Thus, 
the node weight is directly related to the link weights as well as indirectly related to the 
degree of the nodes. A node with larger weights for the incident links and/or a larger number 
of incident links (i.e., larger degree) is likely to have a larger node weight. For each value of 
the number of nodes and the transmission range stated above, we generated 200 network 
graphs (with link weight assignment as mentioned) and averaged the results for the 
performance metrics (shown in Figures 11, 12 and 13). The environment considered in this 
set of simulations could mimic scenarios wherein each link in the network has a trust score 
and the trust score for a node is the sum of the trust scores of its adjacent links. One would 
then prefer to construct DG trees that involve nodes of larger trust scores as intermediate 
nodes (in the case of MaxBNW-DG trees) or include links of larger trust scores (in the case 
of MaxLW-DG trees).   

We observe the average height (Figures 11-a, 12-a) for the MaxBNW-DG trees to be 
significantly lower than that of the MaxLW-DG trees (by factors of 3-9 in networks of 
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high-very high node density and factors of 2-6 in networks of moderate-high node density), 
with the difference in height between the two DG trees increasing with increase in the 
transmission range per node (for a fixed number of nodes). The characteristic of shorter 
distance from any node to the leader node of a MaxBNW-DG tree is very useful for real-time 
reporting of the sensed data by an individual node to the leader node and also facilitates 
one-to-one communication between any two nodes in the network through the leader node.  
 

    

             (a) Height of the DG Tree                             (b) Aggregation Delay 

    

        (c) Child Nodes per Intermediate Node                (d) Percentage of Nodes as Leaf Nodes 

Figure 11: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MaxBNW-DG Trees vs. MaxLW-DG Trees: Moderate-High Node Density] 

 

    

             (a) Height of the DG Tree                            (b) Aggregation Delay 

    

       (c) Child Nodes per Intermediate Node                 (d) Percentage of Nodes as Leaf Nodes 

Figure 12: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MaxBNW-DG Trees vs. MaxLW-DG Trees: High-Very High Node Density] 
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The fewer the number of hops between any two nodes in a DG tree, the lower the energy 
consumption in the network. While the height of the MaxBNW-DG trees decreases 
significantly with increase in node density (the tree becomes more shallow by 
accommodating a significantly larger number of child nodes per intermediate node), the 
height of the MaxLW-DG tree only marginally decreases with increase in node density (as we 
observe the number of child nodes per intermediate node to remain about the same with 
increase in node density).   

The MaxBNW-DG trees incur a significantly larger percentage of nodes as leaf nodes 
(Figures 11-d, 12-d) in the network (almost double the percentage of nodes as leaf nodes 
incurred by the MaxLW-DG trees) and the difference increases with increase in node density. 
While the MaxBNW-DG trees exhibit a significant increase in the percentage of nodes as leaf 
nodes increases with increase in node density, the MaxLW-DG trees exhibit minimal impact 
of the increase in node density on the percentage of nodes as leaf nodes. A larger percentage 
of nodes as leaf nodes in a DG tree is a favorable characteristic for lowering the overall 
energy consumption and increasing the network lifetime. Note that the leaf nodes spend 
energy only to transmit the data packets; whereas, the intermediate nodes spend energy to 
receive the data packets from the child nodes, aggregate them as well as forward to their 
upstream node in the DG tree. Hence, the network lifetime is more likely to be longer if the 
number of intermediate nodes is lower.   

We also observe the average weight per intermediate node (Figure 13) in a MaxBNW-DG 
tree to be appreciably greater (20-40% greater) than the average weight per intermediate node 
in a MaxLW-DG tree. In networks where link weights represent trust scores for a link and 
node weights (sum of the incident link weights) are modeled as the trust scores for the nodes, 
we thus see that a MaxBNW-DG tree is more likely to have a collection of intermediate 
nodes that are relatively more trustworthy than that of a MaxLW-DG tree constructed on the 
same network graph. Though the average weight per leaf node (Figure 13) is not of any 
practical significance, we do observe the average weight per leaf node in a MaxBNW-DG 
tree to be about 5-8% greater than the average weight per leaf node in a MaxLW-DG tree. 

 

         

    (a) Moderate-High Node Density [50 Nodes]        (b) High-Very High Node Density [100 Nodes] 

Figure 13: Average Weight per Node [MaxBNW-DG Trees vs. MaxLW-DG Trees] 

As the node density increases, MaxBNW-DG trees incur a significantly larger 
aggregation delay (Figures 11-b, 12-b) if data has to be aggregated across all the nodes 
(network-wide). It could be attributed to the DG tree being more shallow and each 
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intermediate node having a larger number of child nodes (Figures 11-c, 12-c), especially as 
the node density gets higher. We observe the average number of child nodes per intermediate 
node incurred with the MaxBNW-DG trees to be about 2.5 - 7.5 times larger than that 
incurred with the MaxLW-DG trees. The aggregation delay incurred with the MaxBNW-DG 
trees could be as large as four times the aggregation delay incurred with the MaxLW-DG 
trees. 

5.2 Maximum Bottleneck Node Weight vs. Minimum Link Weight-based Data Gathering Trees 

For the second set of simulations, we set the node weights to be independent of the link 
weights. For each transmission range value, we generate 200 network graphs in each of 
which the nodes are randomly distributed in the network area. In each such graphs, the 
weights for the nodes are randomly assigned in the range [0...1] to represent the residual 
energy of the nodes; the weight for a link (u, v) is the square of the Euclidean distance 
between the two end nodes u and v. We model the link weight as per the commonly used 
energy consumption model [13] for sensor networks, according to which the energy lost to 

transmit a k–bit message over a distance d is given by Eelec*k + 2** dkamp∈ , wherein Eelec 

and amp∈ are respectively the energy expended by a radio to run the transmitter or receiver 

circuitry and the transmitter amplifier. Energy lost during transmission over a link is typically 
modeled as the square of the distance between the end nodes of the link [1-11]. 

We run the MaxBNW-DG algorithm to determine a maximum bottleneck node 
energy-based data gathering tree for which the bottleneck node energy (minimum energy) of 
the constituent nodes on a path (including the end nodes of the path) from any node to the 
leader node of the MaxBNW-DG tree is the maximum as well as the average energy per 
intermediate node is significantly larger than the average energy per leaf node. The 
MinLW-DG tree algorithm determines a DG tree for which the sum of the squares of the 
distances between the end nodes of all the links in the DG tree is the minimum; this way, the 
transmission energy lost per link is minimized. As can be noticed, the node weights (node 
energy) and link weights (square of the distance between the end nodes of the link) are not 
related to each other. Since we work on static snapshots of the network graphs and do not 
simulate any packet transfer across the links, the energy lost at a node due to packet 
transmission or reception does not need to be taken into account. We refer to the 
MaxBNW-DG tree as the MaxBNE-DG tree and the MinLW-DG tree as the MinSqDist-DG 
tree. 

We observe the MaxBNE-DG trees to exhibit a similar trend of performance (as the 
MaxBNW-DG trees in Section 5.1) with respect to all the metrics. Though the height of the 
MaxBNE-DG trees (Figures 14-a, 15-a) tend to be about 50-100% larger than that of the 
MaxBNW-DG trees (seen in Section 5.1), we observe a similar trend of decrease in the height 
of the DG tree with increase in node density. The distance (number of hops) between any 
node to the leader node of the MaxBNE-DG tree does not increase significantly and remains 
comparable to that of the MaxBNW-DG trees. The height for the MinSqDist-DG trees is 
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about 50% larger than that of the MaxLW-DG trees (seen in Section 5.1); however, similar to 
that of the MaxLW-DG trees, the height of the MinSqDist-DG trees remains about the same 
or even slightly increases with increase in the transmission range of the nodes (for a given 
number of nodes). The height of the MinSqDist-DG trees is about a factor of 2.5-5.5 and 
3.5-8.5 larger than that of the MaxBNE-DG trees for networks of moderate-high density and 
high-very high density respectively.  

    

            (a) Height of the DG Tree                             (b) Aggregation Delay 

    

       (c) Child Nodes per Intermediate Node                 (d) Percentage of Nodes as Leaf Nodes 

Figure 14: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MaxBNE-DG Trees vs. MinSqDist-DG Trees: Moderate-High Node Density] 

As is the case of the MaxBNW-DG trees, the number of child nodes per intermediate 
node for the MaxBNE-DG trees (Figures 14-c, 15-c) is much higher than that incurred with 
the MinSqDist-DG trees whose average number of child nodes per intermediate node is even 
lower than that of the MaxLW-DG trees. With about 1.3 child nodes per intermediate node, 
the network-wide aggregation delay for the MinSqDist-DG tree is almost the same as the 
height of the tree. The network-wide aggregation delay (Figures 14-b, 15-b) incurred with the 
MaxBNE-DG trees is lower than that of the MinSqDist-DG trees when the height of the 
MaxBNE-DG trees is moderately larger and the child nodes are evenly spread across all the 
intermediate nodes (noticeable when the node density is moderate-high and transmission 
ranges are in the lower end of the values used); the delay incurred with the MaxBNE-DG 
trees increases to become more than that incurred with the MinSqDist-DG trees when the 
transmission range gets very high and the height of the MaxBNE-DG trees decreases 
significantly (leading to a very large number of child nodes per intermediate node).  

For a given node density, the aggregation delay incurred with the MaxBNE-DG trees is 
significantly smaller than that of the MaxBNW-DG trees (by a factor of 50-100%); Thus, 
though (in general), the maximum node weight-based DG trees appear to incur a larger 
aggregation delay compared to the link-weight based data gathering trees, the actual 
magnitude of the aggregation delay depends on the criterion used for node weight and the 
impact of it on the height of the DG tree and the number of child nodes per intermediate node. 
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If the criterion for node weight is related to the number of incident links on the node (like the 
criterion used in the first set of simulations), nodes with a larger degree are more likely to be 
favored as intermediate nodes and the height of the DG tree decreases significantly with 
increase in node density, leading to a significant increase in the aggregation delay. On the 
other hand, if the criterion for node weight is independent of the degree of the node (like the 
node energy criterion used in the second set of simulations), the height of the DG tree 
remains at a moderate value and the aggregation delay is only moderately high compared to 
that incurred with the link weight-based data gathering trees. 

    
             (a) Height of the DG Tree                            (b) Aggregation Delay 

    
        (c) Child Nodes per Intermediate Node                (d) Percentage of Nodes as Leaf Nodes 

Figure 15: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MaxBNE-DG Trees vs. MinSqDist-DG Trees: High-Very High Node Density] 

 

    

    (a) Moderate-High Node Density [50 Nodes]          (b) High-Very High Node Density [100 Nodes] 

Figure 16: Average Energy per Node [MaxBNE-DG Trees vs. MinSqDist-DG Trees] 

With regards to the percentage of nodes as leaf nodes (Figures 14-d, 15-d), we observe 
both the MaxBNW-DG and MaxBNE-DG trees to incur almost about the same value, with 
the latter having a slightly larger number of leaf nodes (with values above 90% in networks 
of high-very high node density and high transmission range). On the other hand, the 
percentage of nodes observed as leaf nodes in the MinSqDist-DG trees is below 25% (and 
also about 15-18% lower than that incurred with the MaxLW-DG trees). This could be 
attributed to the significantly larger height of the MinSqDist-DG trees.  

With regards to the average energy per node (Figure 16), we observe the average energy 
per intermediate node for the MaxBNE-DG trees to be almost twice the average energy per 
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node for the MinSqDist-DG trees. The ratio of the average energy per intermediate node for 
the MaxBNE-DG trees to that of the MinSqDist-DG trees is even larger than the ratio of the 
average weight per intermediate node for the MaxBNW-DG trees to that of the MaxLW-DG 
trees (despite there being an upper limit on the energy per node and no such direct constraint 
on the weight per node in the simulations of section 5.1). On the other hand, the 
MinSqDist-DG trees appear to sustain an even distribution of the energy levels (the average 
energy per intermediate node is about the same as the average energy per leaf node, despite 
the percentage of nodes as leaf nodes being below 25%).   

 

6. Minimum Bottleneck Node Weight-based Data Gathering Trees  

In this section, we show how the proposed generic algorithm for maximum bottleneck 
node weight-based data gathering trees (MaxBNW-DG trees) could be easily modified to 
determine minimum bottleneck node weight-based data gathering trees (MinBNW-DG trees) 
for which the bottleneck weight of a path from a node to the root node of the DG tree is 
defined as the largest of the node weights on the path (including the weights for the end 
nodes) and the focus would be to determine a DG tree for which the path from any node to 
the root node has the minimum bottleneck weight. To determine such MinBNW-DG trees, 
one would have to set the root node to be the node with the smallest node weight, set the 
initial values for the Estimated-join-weight of the other nodes to be ∞ and in each iteration 
attempt to reduce the Estimated-join-weight of the nodes as much as possible (by comparing 
with the maximum of the Tree-join-weight of the node being optimized and the individual 
weight of the node and updating the Estimated-join-weight if it is still larger than the 
maximum of the above two values). Figure 17 presents the pseudo code for the algorithm to 
determine MinBNW-DG trees. An example scenario for employing the minimum bottleneck 
node weight-based DG trees would be when node weights are modeled as node velocities in a 
mobile sensor network and we target to determine stable data gathering trees such that the 
maximum velocity for any node on the path is the minimum.  

Figures 18-20 present simulation results for MinBNW-DG trees wherein the node weights 
are modeled as the node velocities assigned randomly from the range [0...1]. We refer to the 
MinBNW-DG trees as the MinBNV-DG trees as they represent the node velocity in this 
simulation study. The values for the other operating parameters are the same as those used in 
Sections 5.1 and 5.2. We compare the values of  the performance metrics for the 
MinBNV-DG trees with that of the MaxBNE-DG trees. Both the trees exhibit almost a 
similar performance with respect to the height (Figures 18-a, 19-a), aggregation delay 
(Figures 18-b, 19-b), number of child nodes per intermediate node (Figures 18-c, 19-c) and 
the percentage of nodes as leaf nodes (Figures 18-d, 19-d).  
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------------------------------------------------------------------------------------------------------------------------------- 
Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BNW

Min EVT  where ET is the set of edges in the MinBNW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 
          Estimated-join-weight, Tree-join-weight, Leader Node 
Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 
        Vu∈∀ : Estimated-join-weight(u) = ∞, Tree-join-weight(u) = ∞ 
 
Begin MinBNW-DG Algorithm 

1 Leader Node s = {u | ))(( uWMinimum V } 

2 Parent-Node-List(s) = NULL 
3 Candidate-Nodes-List = Candidate-Nodes-List ∪ {s} 
4 Estimated-join-weight(s) = WV(s) 
5 while (Candidate-Nodes-List ≠ ϕ) do 

6  Node u = {i | 
ListNodesCandidatei

Minimum
−−∈

(Estimated-join-weights(i)} 

7  Candidate-Nodes-List = Candidate-Nodes-List - {u} 
8  Optimized-Nodes-List = Optimized-Nodes-List ∪ {u} 
9  Tree-join-weight(u) = Estimated-join-weight(u) 
10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 
11   if (Estimated-join-weight(v) > Maximum(WV(v), Tree-join-weight(u) ) ) then 
12    Estimated-join-weight(v) = Maximum(WV(v), Tree-join-weight(u) ) 
13    Parent-Node-List(v) = u 
14   end if 
15  end for 
16 end while 
17 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | < | V | ) then 
18  return NULL; // the graph is not connected 
19 end if 
20 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | = | V | ) then 
21  for (Node u ∈V  AND u ≠ Leader Node ) do 
22        ET = ET ∪  {(u, Parent-Node-List(u))} 
23  end for 
24 end if 

25 return ),( T
BNW

Min EVT  

End MinBNW-DG Algorithm 

----------------------------------------------------------------------------------------------------------------------------------- 

Figure 17: Pseudo Code for the Algorithm to Determine Minimum Bottleneck Node Weight-DG Trees 
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             (a) Height of the DG Tree                          (b) Aggregation Delay 
 

    

        (c) Child Nodes per Intermediate Node              (d) Percentage of Nodes as Leaf Nodes 

Figure 18: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MinBNV-DG Trees vs. MaxBNE-DG Trees: Moderate-High Node Density] 

 

    

            (a) Height of the DG Tree                             (b) Aggregation Delay 
 

    

      (c) Child Nodes per Intermediate Node                (d) Percentage of Nodes as Leaf Nodes 

Figure 19: Height, Aggregation Delay, Avg. # Child Nodes per Intermediate Node and Percentage of Nodes as 
Leaf Nodes [MinBNV-DG Trees vs. MaxBNE-DG Trees: High-Very High Node Density] 

 

As expected for MinBNW-DG trees, the average weight per intermediate node (Figure 20) 
in the MinBNV-DG trees is significantly lower than the average weight per leaf node. While 
the average weight per intermediate node for the MinBNV-DG trees decreases with increase 
in node density, the average weight per intermediate node for the MaxBNE-DG trees 
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increases with increase in node density (both the algorithms make use of the increase in the 
number of nodes to accomplish the expected performance for their respective data gathering 
trees as much as possible, with respect to the average weight of the intermediate nodes). We 
thus see that both the MaxBNW-DG and MinBNW-DG trees exhibit an identical performance 
(with respect to height, aggregation delay, number of child nodes per intermediate node, 
percentage of nodes as leaf nodes) and optimize (maximize or minimize) the bottleneck 
weight of the paths (as appropriately defined) for their respective data gathering trees. 

 

    
    (a) Moderate-High Node Density [50 Nodes]         (b) High-Very High Node Density [100 Nodes] 

Figure 20: Average Weight per Node [MinBNV-DG Trees vs. MaxBNE-DG Trees] 

 

7. Related Work  

In this section, we discuss sample works that have been proposed in the literature for 
node-weight based data gathering trees and we show how the proposed generic 
MaxBNW-DG algorithm could be used to study/simulate each of them. We also highlight the 
strengths of the MaxBNW-DG algorithm over some of the related works proposed in the 
literature. The performance of the energy-aware maximal leaf nodes-based data gathering tree 
(EMLN-DG tree) [16] also vindicates the observations made in this paper. EMLN-DG trees 
were constructed with nodes having a larger value for the product of the residual energy 
available at the nodes and the number of uncovered neighbors during each iteration of the 
algorithm. EMLN-DG trees were observed to incur a relatively lower energy loss per round, 
higher value for the round of first node failure (node lifetime) as well as a lower aggregation 
delay per round compared to that of the well-known LEACH [1] and PEGASIS [4] 
algorithms for data gathering. The proposed generic algorithm for MaxBNW-DG trees could 
be used to determine EMLN-DG trees using the product of the available energy at the nodes 
and the number of uncovered neighbors (or the degree of the nodes) as the node selection 
criterion.  

In [9], a heuristic for maximizing the lifetime (MLT) of the data gathering trees was 
proposed by suggesting to include nodes in the tree (one by one, starting from the sink node 
that is assumed to have the largest energy among the nodes - like the leader node of our 
MaxBNW-DG tree) such that the network lifetime resulting with the inclusion of a new node 
v to the tree is at least the network lifetime incurred without the inclusion of node v to the tree 
or (if the reduction is unavoidable) the reduction in the network lifetime due to the inclusion 
of a node is minimized; the node that best meets the above criterion is preferred for inclusion 
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in the DG tree in each iteration of the algorithm. Data gathering trees determined with the 
above MLT heuristic could be very well determined using our proposed MaxBNW-DG 
algorithm by modeling the node selection criterion as the residual energy of the nodes. Recall 
that in each iteration of the MaxBNW-DG algorithm, we explore the neighborhood of the 
vertex being optimized by taking the minimum of the Tree-join-weight of the vertex and the 
weight of the neighbor node, and increase the currently Estimated-join-weight of the neighbor 
node if it is less than the minimum of the above two variables. This way, if a neighbor node 
has a larger weight than the Tree-join-weight, the currently Estimated-join-weight is the 
Tree-join-weight; otherwise, the currently Estimated-join-weight is the weight of the neighbor 
node itself. And in the beginning of each iteration of the MaxBNW-DG algorithm, we pick 
the vertex that has the largest Estimated-join-weight - this way, the Tree-join-weight of a node 
optimized in iteration i+1 is either the same as the Tree-join-weight of the node optimized in 
iteration i or as close as possible (i.e., with minimum difference) if less than the 
Tree-join-weight of the node optimized in iteration i (this is equivalent to the MLT heuristic's 
idea of either maintaining the same network lifetime without the inclusion of a new node or 
minimizing the reduction in the network lifetime with the inclusion of a new node, if the 
reduction is unavoidable). 

In [17], a minimum transmission data gathering tree algorithm was proposed for 
compressive sensing to construct DG trees in which the nodes that report data at a high 
frequency are preferred to be close to the root of the tree and nodes that report data less 
frequently are preferred to be away from the root. We can transform this problem to the 
problem of constructing a maximum bottleneck weight-based data gathering tree with the 
node selection criterion as the frequency of data reporting; nodes that occasionally report data 
are more likely to be the leaf nodes and nodes that often send updates to the root/leader node 
are more likely to be the intermediate nodes that are relatively closer to the leader node. Since 
the MaxBNW-DG trees are characteristic to be of reduced height, the transmissions will be 
only on fewer links of the DG tree (thereby reducing the overall energy consumption and 
prolonging the network lifetime).  

If the sensor nodes in the network differ in the wake-up frequencies (proportional to their 
available energy) [18], the MaxBNW-DG tree algorithm could also be used to determine DG 
trees for which the path from a node to the leader node is guaranteed to involve nodes whose 
wake-frequency is at least as large as the wake-frequency of the end nodes of the path; this 
way, data originating from any node could reach the leader node without any in ordinate 
delay due to the intermediate nodes on the tree. In a similar context, if each sensor node in the 
network has an admissible flow [19], the MaxBNW-DG tree algorithm could also be used to 
determine DG trees such that the path from any node to the leader node is guaranteed to 
honor the admissible flow of the end nodes of the path (i.e., every intermediate node as well 
as the node at one end of the path are guaranteed to have an admissible flow that is at least 
the admissible flow of the node at the other end of the path). In [20], the authors have 
proposed a distributed bottleneck flow control technique for mobile ad hoc networks 
(MANETs) wherein each node monitors its channel to determine the residual capacity and the 
source manages to determine a path of the largest bottleneck weight. The MaxLW-DG 
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algorithm discussed in this paper can serve as a benchmarking algorithm to evaluate the 
relative performance of the distributed protocol. The MaxBNW-DG and MaxLW-DG 
algorithms can also be used in conjunction with some of the recently proposed congestion 
control algorithms (e.g., [21]). 

In [22], an iterative algorithm was proposed to transform an arbitrary spanning tree of the 
nodes to a data gathering tree that is more likely to involve edges between nodes having 
larger energy (i.e., the degree of the nodes in the data gathering tree is proportional to the 
energy of the nodes); the algorithm defines a parameter called the inverse lifetime of a node 
as the ratio of the degree of the node in the tree divided by the available energy at the node, 
and groups the nodes in the network into three categories: (i) bottleneck nodes whose inverse 
lifetime is greater than a threshold; (ii) vulnerable nodes whose inverse lifetime is within a 
range of the threshold and (iii) safe nodes are the nodes that are neither bottleneck nor 
vulnerable. For any two safe nodes u and v in an edge (u, v) that is not part of the initial 
spanning tree T, the algorithm explores the possibility of using edge (u, v) to replace an edge 
between two bottleneck nodes or between a bottleneck node or a vulnerable node in T. The 
weakness of this algorithm is that the chances of finding an edge (u, v) involving two safe 
nodes u and v to replace an edge in the original spanning tree reduces significantly even with 
a moderate reduction in the number of safe nodes; as a result, as the number of safe nodes 
reduces, most of the edges in the final data gathering tree could end up being the edges in the 
initial arbitrarily determined spanning tree (determined without any consideration for the 
energy level of the nodes or their degree). On the other hand, our proposed MaxBNW-DG 
algorithm is aware of the node weights throughout the process of constructing the data 
gathering trees and hence is inherently capable of determining DG trees (of relatively larger 
lifetime) for which the average energy per intermediate node is guaranteed to be greater than 
the average energy per leaf node, for all scenarios. Also, the complexity of the algorithm 
proposed in [22] has been shown proportional to the product of |V|, |E| and log|V|; whereas, 
the complexity of our MaxBNW-DG algorithm is Θ(|V| + |E|*log|V|), where |V| and |E| are 
respectively the number of vertices and edges in the graph.  

In [11], it was observed that a connected dominating set [14] of the vertices that have a 
larger value for the product of the available energy and degree of the node could be used as 
the basis to construct a data gathering tree that significantly prolongs the network lifetime. A 
connected dominating set (CDS) is a subset of the vertices in a graph such that for every 
vertex u in the graph, u is either in the CDS or is a neighbor of a node in the CDS [14]. CDSs 
are preferred for minimizing the broadcast overhead in ad hoc and sensor networks [23], as a 
message broadcast by every CDS node in their respective neighborhoods is guaranteed to 
reach the rest of the nodes in the network. Since the entire graph (if connected) is a candidate 
for being a CDS, we typically desire to minimize the size of the CDS (number of nodes being 
part of the CDS) as much as possible to reduce the broadcast overhead. The proposed generic 
algorithms for MaxBNW-DG or MinBNW-DG trees could be directly used to determine such 
connected dominating sets (based on different node selection criterion): as the MaxBNW-DG 
and MinBNW-DG trees are characteristic of incurring a larger percentage of nodes as leaf 
nodes (at least 80% of the nodes are leaf nodes), a CDS of the intermediate nodes (at most 
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20% of the nodes) of the MaxBNW-DG or MinBNW-DG trees would be of lower size and 
could be constructed by simply adding edges between any two intermediate nodes as long as 
they are within the neighborhood of each other.  

 

8. Conclusions and Future Work 

The performance of the maximum bottleneck node weight-based data gathering trees in 
both the simulation studies (Sections 5.1 and 5.2) and comparison with related work (Section 
7) truly vindicate the generic nature of the proposed algorithm to work for any suitable 
criterion of node weights (that are dependent or not dependent on link weights) and stay true 
to its original hypothesis - the algorithm is likely to determine data gathering trees with a 
lower height, larger weight per intermediate node on average (compared to the leaf node) as 
well as a significantly larger percentage of nodes as leaf nodes (contributing towards lower 
energy consumption). Thus, given a choice between constructing DG trees of larger 
bottleneck node weights or larger (smaller) link weights, one could choose the maximum 
bottleneck-weight based DG trees for reduced hop count between any node to the leader node 
of the tree (facilitates real-time reporting of events), larger average weight per intermediate 
node (e.g., for trust-based data gathering) and significantly larger percentage of nodes as leaf 
nodes (as large as 90%) that could contribute towards lower energy consumption.  

The tradeoff is a larger aggregation delay for network-wide data gathering incurred with 
the maximum bottleneck weight-based DG trees, especially those for which the criterion for 
node weight is related to the node degree (like in the simulations of Section 5.1 wherein the 
node weight is the sum of the link weights), attributed to the significantly lower height, a 
larger number of child nodes per intermediate node and a larger percentage of nodes as leaf 
nodes. We observe the MaxLW-DG trees (the link weight is a random number from [0...1]) to 
incur the lowest aggregation delay; the MinLW-DG trees (the link weight is the square of the 
Euclidean distance between the end nodes of the link) incur a significantly larger height that 
contributes to a much higher aggregation delay (that is even larger than the aggregation delay 
incurred with the MaxBNE-DG trees in networks with moderate node density).  

Overall, observing the results obtained for the simulation studies of Section 5.2 and 
comparing them with the results obtained in Section 5.1, we opine that if the criterion used 
for node weight is independent of the link weight, the maximum bottleneck node 
weight-based data gathering trees could incur a network-wide aggregation delay that would 
be comparable (or only moderately higher) to that incurred with the link-weight based data 
gathering trees and at the same time retain all the other desirable performance measures (for 
longer network lifetime with reduced energy consumption) such as lower height, larger 
percentage of nodes as leaf nodes and a larger weight per intermediate node (also suitable for 
trust-based data gathering trees).  

As part of future work, we plan to work on developing distributed versions of the 
MaxBNW-DG and MinBNW-DG algorithms for optimizing energy consumption and 
stability respectively, and compare their performance with that of the benchmarking 
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algorithms proposed in this paper. We also intend to use centrality metrics (like betweenness 
centrality) [24] to arrive values for node weights and use these to determine MaxBNW-DG 
and MinBNW-DG trees and evaluate the relative performance of these trees. 
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