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Abstract 

This paper presents a context-aware decision making solution to the problem of radio 
resource management (RRM) and inter-cell interference coordination (ICIC) in long-term 
evolution-uplink (LTE-UL) system. The limitations of existing analytical, artificial 
intelligence (AI), and machine learning (ML) based approaches are highlighted and a novel 
integration of random neural network (RNN) based learning with genetic algorithm (GA) 
based reasoning is presented. Initially, three learning algorithms (gradient descent (GD), 
adaptive inertia weight particle swarm optimization (AIW-PSO), and differential evolution 
(DE)) are applied to RNN and two learning algorithms (GD and levenberg-marquardt (LM)) 
are applied to artificial neural network (ANN). In the second phase, the GA based reasoning 
is applied to the trained ANN and RNN models for performance optimization. Finally, the 
ANN and RNN based optimization results are compared with the state-of-the-art fractional 
power control (FPC) schemes in terms of user throughput and power consumption. The 
simulation results revealed that an RNN-DE based cognitive engine (CE) can provide up to 
14% more cell capacity along with 6dBm and 9dBm less user power consumption as 
compared to RNN-GD and FPC methods respectively.  

Keywords: Artificial neural network, fractional power control, genetic algorithm, inter-cell 
interference coordination, long-term evolution-uplink system, radio resource management, 
random neural network. 

 

 

 

 

 

www.macrothink.org/npa 157 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2015, Vol. 7, No. 3 

1. Introduction 

Human beings are context-aware decision makers. In any rational decision making 
situation, human beings follow four fundamental processes i.e., observe, analyse, decide, and 
act. The continuity among them makes a cycle, which is commonly known as a cognitive 
cycle. An illustration of natural context-aware decision making is shown in Fig. 1, where the 
decision making starts by observing the context first, then analysing the possible actions 
based on their expected performance e.g., if we decide this action, what would be the possible 
result? Or what will happen if we select another action? Based on the analysis, the most 
optimal action is to be selected to act upon. 

The quality of decision making significantly depends on the quality of learning i.e., how 
well we learn from our past experiences [1]. Therefore, learning is the core of any decision 
making framework. An illustration of simple artificial context-aware decision making is 
shown in Fig. 2, where ML is integrated with the reasoning process. ML provides the 
learning capability and the ability to characterize the performance of different possible 
actions. Reasoning process selects the best action in order to achieve single or multi-objective 
optimization. 

The selection of an appropriate ML and reasoning technique in Fig. 2 depends on the 
application requirements such as learning time, prediction accuracy, decision making speed 
during run-time, generalization etc. In addition, the constraints such as the amount of 
knowledge available for learning and computational complexity play a vital role in the 
selection of any ML/reasoning algorithm. The artificial context-aware decision making 
framework with an appropriate ML/reasoning algorithm can be applied to solve wide-range 
of decision making problems in multiple disciplines, such as information and communication 
technology (ICT), customer relationship management, and online advertisement scheduling 
etc.  

The problem we have focused on is an ICT related problem i.e., RRM and ICIC in 
LTE-uplink. Power control (PC) is one of the most researched topics in LTE-uplink 
optimization. An advance PC mechanism can address inter-cell interference (ICI), adjacent 
channel interference (ACI), and user power consumption challenges in a better way. RRM 
and ICIC have been extensively studied and researchers have proposed solutions with 
variations in approaches from statistical/analytical [2] to cognitive or self-organized 
approaches [3]. However, the cognitive approaches are more appealing for ICIC and RRM 
because the combined learning and reasoning processes are capable to deal with non-ideal 
communication behaviours in a competent way as compared to analytical modelling. 
Researchers have borrowed ideas from ML and AI techniques in order to acquire cognitive 
features or desired intelligence capabilities. However, most of the proposed AI/ML based 
solutions for cognitive radio (CR) in literature ([4], [5]) are deficient in achieving the basic 
CE design feature concurrently i.e., fast decision making, long-term learning, and less 
computational complexity. The concurrent achievement of these three features is challenging 
but necessary for the practical deployment of any real-time cognitive communication system. 
A brief review on the limitations of some of the AI/ML techniques for CR adaptation and 
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decision making in real-time is presented in Table 1 [4] [5] [6].  

The abilities of neural networks (NNs) have not been fully utilized because of the issues 
such as their training problems, sensitivity to the number of hidden neurons, local-minima 
problem, generalization capability, available training samples, and computational complexity. 
These issues and genuine reservations about NNs have restricted their applications in CR 
adaptation and decision making problem and in many other real-time applications. Otherwise, 
NNs can be effective because of their superior ability to deal with non-linear problems, 
natural behaviour of learning, fast parallel processing, easy implementation, and to be used in 
problems where no other heuristic or rule-based solution fits. 

 

Fig. 1: Natural Context-Aware Decision Making 

 

Fig. 2: Artificial Context-Aware Decision Making 

 

www.macrothink.org/npa 159 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2015, Vol. 7, No. 3 

TABLE 1: AI/ML Techniques Limitations for Cognitive Radio Adaptation and Decision Making in Real-Time.  

Algorithm Limitations 

Genetic algorithm and particle swarm 

optimization (when the priori characterizations 

of performance metrics is to be derived from 

the analytical modelling) 

Limited learning, limited modelling assumptions, lack of ability to deal with 

non-ideal communication behaviours, and poor scalability. 

Case-based-reasoning (CBR) 

Performances are more related to the cases only stored in the case database and 

large number of cases may require large memory. In addition, not suitable to 

deal with unknown situations. 

Rule-based system (RBS) 
Performance depends on certain rules and cannot perform well in an unknown 

condition. 

Hybrid approaches such as particle swarm 

optimization + case-based-systems 

Memory problem, high computational complexity, limited learning, limited 

modelling assumptions, lack of ability to deal with non-ideal communication 

behaviours, and poor scalability. 

Hidden Markov model (HMM) Requires good training and computationally complex 

Partially observable Markov decision 

processes (POMDPs) 
Computationally very expensive and applicable to very simple problems. 

Non-parametric learning: Drichlet process 

mixture model (DPMM) 

Requires large number of iterations (slow convergence) and unsuited for 

real-time cases. 

Support vector machines (SVM) 

Choice of the best suited kernel function parameters, slow processing in testing 

phase, high algorithmic complexity, and extensive memory requirement for 

large-scale tasks 

Artificial neural networks (ANNs) 
Training and local-minima problems, limited generalization, and slow 

calculation rate during run-time. 

Reinforcement learning (RL) 

For realistic applications, the size of state-space could be so large that learning 

may take a long time and even become impossible in a reasonable time frame. 

As a result, the generalization over the state-space is necessary, which is 

insufficient in RL. 

In our previous work [7], we presented an application of RNN to the problem of RRM 
and ICIC in LTE-UL. The presented RNN based CE model acquired features such as better 
generalization, fast calculation in run-time, and easy hardware/software implementation. 
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Furthermore, to achieve the best learning capability and avoid local-minima problem, four 
learning algorithms (GD, AIW-PSO, DE, and GA) were applied to RNN and critically 
analysed.  

In this paper, we extended [7] by integrating a GA based reasoning with ANN and RNN 
based learning models, in order to optimize the performance of LTE-uplink system. The 
considered LTE-uplink system is the same except to inter-site distance and resource blocks 
(RBs) bandwidth configuration parameters. The slight change in the system configuration 
settings reflected considerably in training algorithm performances as compared to [7]. In [7], 
AIW-PSO performed the best, whereas GD, DE, and GA had low performances. In this 
paper, DE performed the best, whereas, GD and AIW-PSO had slightly lower performances. 
However, the focus of this work is to critically analyse the optimization performance in terms 
of throughput and power consumption.  

In rest of the paper, Section 2 presents the related work in literature and their limitations. 
Section 3 presents an overview of RNN and training algorithms. Section 4, illustrates the 
proposed system model, modelling assumptions and calculations. Section 5 presents the 
proposed CE design. Section 6 illustrates the training and optimization results. Finally, 
Section 7 presents the conclusions. 

 

2. RRM and ICIC Related Work 

3rd generation partnership project (3GPP) defined FPC as a power control method for 
LTE-uplink system. FPC method aims to compensate the path-loss (PL) perceived by the 
users. However, in FPC method, the assumption that interference towards other cells is 
mostly because of the cell-edge users is not always true. The generated ICI in [8] negated this 
assumption, where the interior users contributed to the aggregated ICI as well. Therefore, the 
transmit power should be controlled in order to reduce ICI rather than the path-gain. In 
literature, different power controlling methods have been presented.  

The authors in [9] presented six different scheduling algorithms for multi-cell wireless 
cellular systems. However, the inefficient use of spectrum and the requirements for backhaul 
communication and location information are some of the drawbacks in this approach. The 
authors in [8] proposed an interference based power control scheme which targets to achieve 
a fixed level of interference at every cell by dynamically adjusting the target 
signal-to-interference-noise ratio (SINR). However, the approach fails to concurrently 
improve both capacity and coverage and it is also unclear how the interference target could 
be dynamically set based on the traffic statistics. The authors in [10] extended the work of [2] 
in a self-organizing (SO) manner. The authors used support vector regression as a learning 
scheme in order to assist eNodeB in reallocating resources upon high traffic load. The 
approaches based on SVMs suffers from the problem of selecting kernel function and its 
parameters [11], high algorithmic complexity, training of multi-class SVM, and large 
memory requirement. An RL based approach for power control is presented in [12]. 
However, the approach suffers from less generalization capability and it is not suitable for 
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real-time cognitive communication system. Similarly, a game theory based power control 
framework is presented in [13]. This approach requires user-specific utility parameters which 
cannot always be acquired in many situations [4]. The authors in [14] integrated a Q-learning 
method with an ANN. However, both RL and ANN suffer from the same aforementioned less 
generalization problem; moreover, ANNs slow calculation rate at run-time, local minima, and 
over-fitting problems are some of the additional limitations.  

To the best of our knowledge, limited work has been conducted to concurrently acquire 
CE design features. In contrast with existing AI/ML based approaches, RNNs inherent 
properties such as: (a) efficient computation (b) low complexity (c) energy-efficient hardware 
implementation (d) less dependency on network structure (e) strong generalization capability 
even with small training dataset, makes RNN a better choice for CE design [16]. Moreover, 
most of the presented RRM approaches in literature have failed to comply with LTEs full 
frequency spectrum usage requirement. 

 

3. Random Neural Network 

RNN, a machine learning technique, made up of highly interconnected processing 
elements called as neurons, processes the information by their state response and learns from 
examples. The main objective of the RNN model is to transform the inputs into meaningful 
outputs, learn the input-output relationship, and offer viable solutions to unseen problems (a 
generalization capability). RNNs were first developed by Gelenbe [17] as a new modified 
class of ANNs. RNN represents the transmission of signals in a very similar form to 
biological neural networks but offers more benefits and cope with the limitations of ANNs. 

In RNN, the pulses travel in the form of impulses or exchange the signals in the form of 
spikes. The potential (k) of each neuron represents its state that increases/decreases with 
respect to an incoming signal. If a neuron receives an excitatory signal (+1), its potential 
increases and correspondingly decreases upon receiving inhibitory signal (-1) [17]. When the 
potential of neuron is equal to zero (ki = 0), it is in idle state and when (ki > 0), the neuron is 
excited. In the state of excitation, the neuron fires according to the Poisson process 
represented by the synaptic weights w+

ij = rPij
+ and w-

ij = rPij
-, where Pij

+ and Pij
- are the 

probabilities of excitatory and inhibitory signals and r is the spikes firing rate. The w+
ij and 

w-
ij can also be seen as the positive and negative rates of signal transmissions and these are 

typical interconnections weights of a neural network that RNN learns through the process of 
learning or training. The average rate of +ive signals at neuron i (λi

+), average rate of -ive 
signals at neuron i (λi

-), and the probability that neuron i is excited (qi), are calculated using 
the following equations:  

wq ij

n

j
jii

+

=

+ ∑Λ +=
1

λ                (1) 
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If 0 ≤ qi ≤ 1 for i = 1, 2, 3..., n then the stationary joint probability of network p (k, t) = pr 
= [k (t) = k] can be written as: 
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i

n

i i
kp ∏=

−=
1

)1()(                  (4) 

A general RNN model is depicted in Fig. 3. Further in-depth details are comprehensively 
presented in [18]. 

 

Fig. 3: Feed-forward random neural network architecture 

3.1. RNN Training Algorithms 

The goal of training is to learn desired system behaviour and adjust the network 
parameters (interconnections weights) to map (learn) the input-output relationship and 
minimize the mean square error (MSE). This paper has used GD, AIWPSO, DE and GA as 
learning algorithms. The GD algorithm calculates the gradient of the cost function with 
respect to all network synaptic weights and adjusts them in order to minimize the MSE. 
Further in-depth detail of RNN GD is presented in [17]. The procedure for AIW-PSO and DE 
learning algorithms is as follows: 

3.1.1. AIW-PSO Learning Procedure 

1. Initialize a population of S particles with random positions and velocities of d 
dimensions in the problem space. The position vector is an array of 
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interconnected weights of feed forward RNN having I Input nodes, H hidden 
nodes and O output nodes. The dimension of D is 2(I.H+H.O). The position 

vector is formulated as ], where 1≤ i≤I, 1≤ h

≤H, 1≤o≤O. The weights are randomly distributed over the interval of [0; 1].  

2. Each particle from a position in generation k moves to a new position k+1 by 
using PSO equation given in (1). The c1 and c2 constant values are set to 2.6 
and 1.1 respectively. 

            )()()()( 21

1 xGcxPcVV k

sd

k

bestsd

k

sd
k
bestsd

k

sd

k

sd randrandW −+−+=+   (5) 

Where Pbestsd and Gbestsd are the particle’s local and global bests. 
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k
sd

k
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Where α is a constant with values between 0 to 1 and ISAk
sd is given as: 
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    Where ε is a small position constant 

3. For each particle, evaluate the fitness function: 

∑∑
= =

+ −=
N

p

O

odeso

k
sd qqX p

1 10
,

1 ])([
2
1             (9) 

Where N is the number of patterns, O is the number of output, qdes,o is the 
desired output in training pattern, and qo (p) is the output of RNN calculated by 
solving (1-3). 

4. Compare particle fitness evaluation with particle local best (Pbest). If current 
fitness evaluation value is less than Pbest, then update Pbest to current value and 
the Pbest location equal to current location in D dimensional space. 

5. Compare fitness evaluation with all Pbest of population S. If Pbest is less than 
global best (Gbest) update Gbest to the current particle array index.  

6. For checking the convergence criteria, compute the average squared error. If the 
MSE is not less than threshold, go to Step-2. If the stopping criterion is met or 
maximum number of iterations is reached, learning is complete 
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3.1.2. DE Learning Procedure 

The steps required for the implementation of DE training algorithm are as follows: 

1. Initialize a population of S particles with random positions and velocities of D 
dimensions in the problem space. The position vector is an array of 
interconnected weights of feed forward RNN of I Input nodes, H hidden nodes 
and O output nodes. The dimension of D is 2(I.H+H.O).  The position vector is 

formulated as ] where 1≤ i ≤ I, 1≤ h ≤ H, 1≤ o≤ O. 

The weights are randomly distributed over the interval of [0; 1]. 

2. Randomly generate three integer numbers r1d, r2d, r3d ϵ [1; S] where r1d ≠r2d ≠ 
r3d ≠ S. Set the value of F and CR to 0.8 and 0.7 respectively.  

3. Mutation operator is the prime operator of DE and it is the implementation of 
this operation that makes DE different from other Evolutionary algorithms. 
Mutate every particle of the population ( 1 ≤ s ≤ S) by applying the DE equation 

)( 321
1 XXXY drd

k
dr

k
sd F −+=+            (10) 

The mutated sth  particle at generation k+1 is of dimension D. The mutated sth 
particle is sum of another particle at location r1d and difference of particle values 
at location r2d and r3d. The contribution of difference of particles is controlled by 
parameter F. 

4. Randomly generate one real number rand() ϵ [0; 1]. Cross over the mutated 
particle and the original particle using (11). 
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           (11) 

5. Evaluate the fitness function given in (12) for Usd
k+1 

∑∑ −
= =

=
N

p

O

o

qpqo odesE
1 1

2])([ ,2
1            (12) 

6. Same as Step 6 of AIW-PSO. 

 

4. System Model 

An OFDMA based RBs collision model is depicted in Fig. 4, where a power control 
strategy is employed to reduce the collision and ICI [9]. Fig. 5 shows a similar collision 
model, which has adopted 7-cell hexagonal layout (2 coexistent-10MHz Evolved Universal 
Terrestrial Radio Access frequency division duplexing systems) with omnidirectional 
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antennas at the centre of each cell. In the proposed system model, an RNN based CE is 
embedded inside the reference cognitive-eNodeB (C-eNodeB). The CE is responsible for 
monitoring and configuring the user equipment (UE) once it is attached and also the 
management of radio resources. In addition, the CE is responsible to suggest the optimal 
transmit power for UEs served by adjacent eNodeBs via X2-interface (a communication 
interface between eNodeBs).  

 

Fig. 4: ICI caused by collision between resource blocks which are used simultaneously 
by several users in different cells and corresponding scheduling based on the experienced 
channel quality information and interference in subsequent transmission time interval. 

4.1. Modelling Assumptions and Calculations 

The simulation is based on the assumptions and parameters of E-UTRA 10MHz macro 
cell system used in the Qualcomm simulator. The systems are 100% loaded with frequency 
reuse of 1/1. The UEs are deployed randomly according to a uniform geographical 
distribution in the whole network region. Moreover, wrap around technique is employed in 
order to remove the edge effects. The carrier frequencies of victim and external coexistent 
systems were set to 2000 MHz and 2010 MHz with inter-site distance of 433m. OFDMA 
urban macro propagation model is used. Base station (BS) and UE antennas gains were 
assumed to be 15 dBi and 0 dBi. 24 RBs per BS were assumed. In addition, log-normal 
Shadowing: 10 dB with correlation; minimum coupling loss (MCL): 70 dB; system 
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bandwidth: 10 MHz; bandwidth of RB: 375kHz; handover (HO) margin: 3 dB; thermal noise 
density: -174dBm/Hz; BS noise figure: 5 dB; UE min and max transmit power: -30 dBm to 
24 dBm were the system settings. The FPC settings, OFDMA LTE link-to-system level 
mapping, adjacent channel leakage ratio/unwanted spectrum mask were the same as given in 
Qualcomm STG(08)13 and 3GPP technical specifications [24].   

 
Fig. 5: Proposed system model 

At the beginning of simulation (for every snapshot), UEs were randomly distributed 
throughout the system area and assigned a discrete speed value i.e. 0/3/30/100 km/hr with 
initial transmit power (maximum allowed power). The UEs get attached to the most 
appropriate BS depending on the handover margin, smallest PL, antenna gain, and lognormal 
fading. The connected UEs (active) were scheduled for every snapshot and allocated a certain 
amount of resources according to the quality-of-service (QoS) requirement. Every BS goes 
through with all mobile stations (MSs) on its served mobile list and tries adding their 
requested sub-carriers until all MSs are served or number of available sub-carriers exceeds 
the maximum limit. In the latter case, the BS discards the last MS and tries connecting the 
next mobile in line which may have less required number of sub-carriers. This is equivalent 
to modelling a round robin (RR) scheduler with a full buffer traffic model. The use of RR 
scheduling with power control achieves more gain as compared to channel aware scheduling 
such as proportional fair (PF) [9].  

In [19], the UL power control is defined as follows: 






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



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
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RPP
ilex

t

λ

,max,1min minmax         (13) 

Where Pt is the transmit power of the UE in dBm, Pmax is the maximum allowed transmit 
power in dBm, Rmin is the minimum power reduction ratio to prevent UEs having good 
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channel condition to transmit at low power level i.e. Rmin=Pmin/Pmax. PL is the path-loss in dB 
between UE and serving BS. PLx-ile is the x-percentile PL. With this PC scheme, the x% of 
UEs that have a PL >PLx-ile will transmit at Pmax. However, 0<γ<=1 is the balancing factor for 
UEs with bad/good channel. The value of γ plays a vital role for the trade-off between 
cell-edge UE performance and overall spectral efficiency. If γ=0, all UEs will be transmitting 
at Pmax, resulting poor cell-edge performance. With γ =1, the equation reduces to traditional 
slow power control resulting poor spectral efficiency. The SINR for each UE with respect to 
link-to-system-level mapping is given as follows [20]: 

NII
BSUEPLP

texter

jkjeffectivet

kjkj

kj

kjI
kjcSINR

++

∗
==

),(),(

),(),(

),(
),(

int

,     (14) 

Where C(j,k) is the received power at jth serving eNodeB from the intended kth UE, Pt(j,k) 
is the transmit power in dBm and PLeffective is the effective path-loss which considered 
minimum coupling loss (MCL) as defined in [20]. 

The combined ICI and ACI at the victim reference cell are calculated as follows [20]: 

NII texter kjkjkjI ++= ),(),(),( int
        (15) 

Where Iinter(j,k) is the ICI coming from the UEs of adjacent cells operating on the same 
frequency sub-carriers and is calculated as follows: 

),(),( ,
,1

int BSUEPLpI jkleffective
jll

ter

N
kl

cell

∑
≠=

∗=     (16) 

Iext(j,k) is the ACI coming from the UEs on adjacent channels in coexistent LTE system. 
ACI is the combination of Iunwanted (unwanted emission in adjacent band) and Iblocking 
(blocking effect of receiver) and it is calculated as: 

),(),( ,
1 1

, BSUEiRssBSUEiRssI jvmunwanted
m

k

v
jvmblockingext

N ExtCell
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= =

   (17) 

The effect of Iext(j; k) onto the system performance is set to be equal to zero, in order to 
make better relationship between SINR and ICI for CE learning. 

The achieved bit rate for all uplink users is calculated as follows [20]: 

BWx
N
N

MHz
SINRHz

bps

total

SCRateBit
SC

UEper )(−=−     (18) 

Where Nsc-per-UE and Ntotal-sc are the number of allocated sub-carriers to each UE and total 
number of sub-carriers available at each BS. The xbps Hz is the spectral efficiency with 
respect to calculated SINR and BWMHz is the bandwidth. 

www.macrothink.org/npa 168 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2015, Vol. 7, No. 3 

5. Cognitive Engine Design 

The CE selects the best set of radio parameters (transmission power in our case) for a 
given channel state and application requirements. In CE, learning mechanisms such as ANN 
and RNN assist the reasoning process such as GA in deciding the radio parameters to be used 
in the next block of transmission. The reasoning algorithm uses the learning scheme to 
determine how closely a set of parameters can meet the desired goals. Afterwards, the 
reasoning algorithm correspondingly chooses the set of parameters in order to maximize the 
utility function. Fig.6 shows a general CE design for context-aware decision making, where 
the RNN based learning model is integrated with the GA based reasoning algorithm. The 
learning model is fed with the environmental measurements, configuration parameters, and 
performance metric. The aim of the learning model is to learn the relationship between the 
inputs and outputs i.e., how environmental measurements and configuration parameters are 
effecting the performance. Once the relationship is learnt, the reasoning process can tune the 
controlled parameters in order to maximize the system performance. 

A simplified cognitive operation is illustrated in Fig.7, where the decision is to be made 
based on given environment conditions and current radio objectives. The learning module 
observes the channel X and estimates the performance S given radio configuration Y. The 
vectors X, Y, and S are the training parameters coming from the radio. The radio 
communicates with optimizer the required objectives and current channel quality information 
(CQI). The optimizer then queries the learning module with considered X and Y. The 
learning section returns the approximate performance of considered X and Y i.e. P(S|X, Y). 
Based on this report, the optimization section decides the optimal parameters. In this 
particular case, the RNN based learning agent is able to characterize the performances of 
different possible powers and channels combinations for serving users and adjacent cell 
users.  

 
Fig. 6: General CE design for context-aware decision making 
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Fig. 7: Cognitive engine operation 

 
As stated in Section 1, the accurate learning is of excessive importance so that the 

controller can predict the performance with different combinations of configuration 
parameters. Prior to the above functioning, a process of training or learning is required, where 
some important input/output parameters of the system model should be selected. The 
information which is available to our cognitive controller can be classified into three different 
categories. One, environmental measurements (external factors effecting the reliability of 
communication), we have considered SINR and ICI as environmental measurements. Second, 
configuration parameters (tuning knobs which can be changed in an optimal way to achieve 
desired performance), considered parameters are available channels (RBs) and transmit 
power (P0) of all UEs served by C-eNodeB (reference cell) and the transmit power (P1, P2, P3, 
P4, P5, P6) of all UEs served by adjacent eNodeBs, operating on the same frequency. Third, 
performance metric, expected throughput as a performance measure is considered.  

The aforementioned environmental measurements and configuration parameters are the 
inputs of RNN black-box and the performance metric (throughput) is the output. With a 
feature set X, label set Y, and n training samples T = ((x1, y1),…,(xn, yn)) ∈ (X * Y)n, a ML 
algorithm creates a mapping A: XY from features to labels and predicts the labels for new 
samples. Once the C-eNodeB scheduler selects the UE and assigns RBs for uplink 
transmission, the embedded CE selects the optimal power (P0) for serving UE based on SINR 
and interference on scheduled RBs in subsequent transmission time interval (TTI), such that 
the target SINR is achieved. In addition, the CE suggests the optimal transmit powers of UEs 
served by adjacent 7 eNodeBs (P1, P2, P3, P4, P5, P6), operating on the same scheduled RBs 
via X2-interface. Note that the objective of embedded CE is to maximize the throughput of 
all attached UEs both interior/exterior under the constraints of a given interference threshold. 
The throughput maximization under interference limitation is achieved by putting constraints 
on ICI environmental measurement parameter during optimization. 

 

6. Performance Evaluation  

6.1. Training 
6.1.1. Training Accuracy 
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The main aim of CE training is to achieve the least possible MSE in less training time, 
which represents how well the CE learnt the system behaviour. The CE was trained with 
ANN and RNN using the dataset obtained from the system model. In training, different 
numbers of neurons, hidden layers and epochs were tried. The best performed RNN and ANN 
structures were 1 hidden layer with 6 neurons and 1 hidden layer with 10 neurons 
respectively.  

The least MSE achieved by ANN-GD was 2.88 E-03 in 10K iterations (33 s) and 
ANN-LM achieved the MSE of 1.37 E-06 in 313 iterations (57 s). RNNs detailed statistical 
results including mean of MSE (MMSE), standard deviation of MSE (SD-MSE), and the best 
MSE (BMSE) is given in Table 2. The MMSEs, SD, and BMSEs were calculated by running 
the algorithm 10 times for each iteration case (represented as iter in Table 2 which starts from 
50 up to 300 iterations, in order to get more precise approximation of these quantities). When 
all the training algorithms were run for 50 iterations, the performance of GD was better than 
PSO and DE. However, to achieve the least possible MSE, the iterations were increased to 
300, where the least MSE achieved by GD algorithm was 4.72 E-4, DE converged to 3.67 
E-4, and PSO achieved the least MSE of 5.01 E-04. Similarly, the least MMSE for GD, DE, 
and AIW-PSO was 4.77 E-04, 4.08 E-04, and 5.63 E-04, where the better performance of DE 
and slightly lower performance of AIW-PSO are evident. The training performance of 
ANN-LM in terms of accuracy and training time was better than RNN but RNN 
outperformed ANN in performance optimization. 
 
TABLE 2: Statistical Results- MMSE: Mean of Mean Squared Error, SD-MSE: Standard Deviation of Mean 
Squared Errors, BMSE: Best Mean Squared Error 
 

Iter  
GD AIW-PSO DE 

MMSE SD-MSE BMSE MMSE SD-MSE BMSE MMSE SD-MSE BMSE 

50 7.10 E-04 4.00 E-06 7.03 E-04 3.41 E-03 4.59 E-03 2.95 E-03 1.08 E-02 4.66 E-03 
8.37 E-03 

 

100 5.99 E-04 2.02 E-06 5.95 E-04 1.32 E-03 2.36 E-04 1.08 E-03 3.82 E-03 1.89 E-03 
1.30 E-03 

 

200 5.16 E-04 2.01 E-06 5.12 E-04 6.51 E-04 6.72 E-05 5.83 E-04 1.61 E-03 5.48 E-04 
4.53 E-04 

 

300 4.77 E-04 3.05 E-06 4.72 E-04 5.63 E-04 6.23 E-04 5.01 E-04 4.08 E-04 3.10 E-05 
3.67 E-04 

 

 
6.1.2. Computational Complexity and Calculation Rate: 

 
There is a trade-off between accuracy, computational complexity, and calculation time. 

The computational complexity of GD (O(N:I:H:O)) is less than PSO/DE (O(N:I2:H)) and 
GA. Correspondingly, the execution time of GD (0.89 sec/iteration) was less than AIW-PSO 
(6.47 sec/iteration) and DE (10.31 sec/iteration). Hence, GD outperformed all other 
algorithms in terms of training speed or computational complexity. However, in real-time 
cases (having training time constraints), the CEs are trained once to achieve least possible 
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MSE and the retraining is generally not appropriate. In that case, the calculation time is not of 
significance. Hence, DE is preferred over GD for CE training and to achieve more prediction 
accuracy. 
 
6.2. Testing 
6.2.1. FPC reference point selection: 

 
3GPP defined γ over the range of [0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1]. For a given FPC 

curve, moving from left to right, a trade-off between cell coverage and capacity exists. In two 
extreme cases, when γ=0 (no PL compensation), all MSs transmits at fixed power level and 
BS receives a wide range of power levels. This case leads to poor cell-edge user’s throughput 
due to users low transmission power. However, with full compensation power control 
(FCPC), γ=1, BS receives signals with almost the same power level. Hence, this case 
improves cell-edge user’s throughput at the cost of reduced system capacity. This is due to 
high cell-edge user’s transmission power and corresponding increased interference to 
neighbouring cells. Therefore, it is difficult to ensure fairness between   cell-centre and 
cell-edge users and indeed impossible to improve both capacity and coverage simultaneously. 
Consequently, a basic conclusion is the trade-off between the overall cell throughput and the 
outage cell throughput at different γ values.    

Before the coverage-capacity gains comparison among ANN, RNN, and FPC, the best 
coverage-capacity trade-off case for FPC based method was determined. This was achieved 
by evaluating the FPC based power allocation over the range of different γ values. Fig. 8 
shows the cumulative distribution function (CDF) plots of 5%-tile user throughput (coverage) 
and capacity. In literature, researchers have shown different optimal choices for various γ 
values such as 0.5, 0.6, 0.7, and 0.8 [21] [22] [8] [23]. In our case, we found the best 
coverage- capacity trade-off at γ=0.8 and taken it as a reference point for further investigation 
and comparisons. 

 
6.2.2. FPC, ANN-LM, RNN-GD, and RNN-DE coverage/capacity comparison: 
 

Table 3 illustrates the 5th, 25th, and 50th-%-tile user and cell throughput. Fig.9 and Fig.10 
illustrate the CDF of instantaneous user and cell throughput respectively. The performance 
investigation has revealed that ANN-LM provided 28% more throughput to the cell-edge 
users while keeping the same cell capacity as compared to FPC. In contrast, the RNN-GD 
and RNN-DE based CEs provided 14% more cell capacity while penalising the cell-edge 
users of reference cell as compared to FPC. The ANN based CE allocated high transmission 
power to the cell-edge users in reference cell, which correspondingly increases the ICI in 
adjacent cells. In contrast, the RNN based CE allocated less power to connected cell-edge 
users and higher to users near centre in reference cell. It is to be noted that the variation in γ 
value has caused more changes in the coverage level as compared to the average cell 
capacity. This is due to the considered network layout and configuration.  However, a 
different network layout/configuration setting may cause more deviation in average cell 
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capacity as well. Nevertheless, the aim here is to show the performance differences among 
FPC at γ=0.8 (optimal reference point for comparison), ANN-LM, RNN-GD, and RNN-DE. 
 
6.2.3. FPC, ANN-LM, RNN-GD, and RNN-DE user power consumption comparison: 
 

Table 4 illustrates the 5th, 25th, and 50th%-tile users’ power consumption for the whole 
system. Fig.11 shows the CDF of users’ power consumption for the whole system. The 
comparison among FPC, ANN-LM, RNNGD, and RNN-DE has revealed that the users 
connected to ANN-LM based CE have used almost the same power at the cell-edges and 
slightly lower power on average as compared to FPC. The users’ connected to RNN-GD 
based CE have used approximately 8 dBm less power at cell-edges and 5dBm less power 
when they are in the cell centre, as compared to FPC. The RNN-DE based CE further reduced 
the power consumption, where the 50%-tile of users have used 10dBm, 8dBm, and 6dBm 
less power as compared to FPC, ANN-LM, and RNNGD respectively. 

 

 
(a) User throughput      (b)  Cell throughput 

Fig. 8: FPC based power allocation. Note: how the PL compensation factor controls the 
trade-off between fairness in cell-edge performance (cell-edge users throughput) and sectors 
to accumulate throughput. 
 
TABLE 3: 5%-tile, 25%-tile, and 50%-tile user throughput and average cell throughput (kbps) 

Methods 5%-tile 25%-tile 50%-tile Average cell (capacity) 

FPC-0.4 270 1370 2140 14960 

FPC-0.5 361 1412 2233 15152 

FPC-0.6 385 1511 2150 15368 

FPC-0.8 450 1548 2102 15028 

FPC-1 420 1513 1920 14630 

ANN-LM 540 1517 2225 14890 

RNN-GD 360 1832 2500 16700 

RNN-DE 366 1813 2500 16930 
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TABLE 4: 5%-tile, 25%-tile, and 50%-tile user power consumption (dBm) 

Methods 5%-tile 25%-tile 50%-tile 

FPC-0.4 10.103 15.733 18.647 

FPC-0.6 3.160 11.462 16.259 

FPC-0.8 -4.671 6.809 13.409 

FPC-1 -12.184 2.221 10.341 

ANN-LM -13.916 -1.098 8.664 

RNN-GD -22.527 -6.432 6.584 

RNN-DE -21.421 -12.518 0.5 

 
       Fig. 9: Instantaneous user throughput    Fig. 10: Cell throughput 
 

.  

Fig. 11: Instantaneous user power consumption 

 

7. Conclusion and Future work 

In this paper, we presented a context-aware decision making framework to address the 
problem of RRM and ICIC in LTE uplink. The proposed framework was built by combining 
RNN based learning and GA based reasoning algorithms. Firstly, the ANN and RNN based 
learning models were evaluated in terms of learning accuracy and then the optimization was 
applied to ANN-LM, RNN-GD, and RNN-DE based learning models. The performance 
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evaluation of learning process showed that DE was 22% better than GD and 26% better than 
AIW-PSO in terms of learning accuracy (based on BMSE). The performance evaluation of 
optimization process revealed that the ANN based CE can provide up-to 25% better cell-edge 
performance while keeping the same cell capacity and power consumption as compared to 
FPC. The RNN-GD based CE provided 14% more cell capacity with 8dBm and 5dBm less 
power consumption by cell-edge and centre UEs. The RNN-DE based CE provided 14% 
more cell capacity while further reducing the average UE power consumption up-to 6dBm 
and 9dBm as compared to RNN-GD and FPC respectively. Hence, the RNN-DE based CE 
remained the optimal choice. Table 5 explains the abbreviations used in this paper. In future, 
we intend to compare the performance of simulation with field test, which will better reflect 
the suitability of each algorithm in different scenarios.  

 
TABLE 5: Abbreviations  

 
3GPP 3rd Generation Partnership Project 
AI Artificial Intelligence 
AIW-PSO Adaptive Inertia-Weight Particle Swarm Optimization 
ANN Artificial Neural Network 
ACI Adjacent-Channel Interference 
BS Base Station 
CR Cognitive Radio 
CE Cognitive Engine 
CQI Channel Quality Information 
CCO Capacity and Coverage Optimization 
CBS Case-Based System 
CLPC Closed Loop Power Control 
CDF Cumulative Distribution Function 
DE Differential Evolution 
EUTRA Evolved Universal Terrestrial Radio Access 
FPC Fractional Power Control 
GA Genetic Algorithm 
GD Gradient Descent 
HMM Hidden Markov Model 
ICI Inter-Cell-Interference 
ICIC Inter-Cell-Interference-Coordination 
LTE Long Term Evolution 
LM Levenberg-Marquardt 
ML Machine Learning 
MCL Minimum Coupling Loss 
MSE Mean Square Error 
MS Mobile Station 
NN Neural Network 
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OFDMA Orthogonal Frequency Division Multiplexing Access 
PC Power Control 
PL Path-Loss 
PSO Particle Swarm Optimization 
PF Proportional Fair 
QoS Quality-of-Service 
RL Reinforcement Learning 
RNC Radio Network Controller 
RBS Rule-Based System 
RB Resource Block 
RRM Radio Resource Management 
RNN Random Neural Network 
RR Round Robin 
SINR Signal-to-Interference-Noise-Ratio 
SVM Support Vector Machine 
SON Self-Organizing-Network 
SO Self-Organizing 
SD Standard Deviation 
TTI Transmission Time Interval 
UL Up-Link 
UE User Equipment 
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