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Abstract 

Spectrum scarcity has been encountered as a leading problem when launching new wireless 
services. To overcome this problem, cognitive radio is an optimistic solution. Spectrum 
sensing is a prominent task of cognitive radio. Over the past decade, numerous spectrum 
sensing algorithms have been proposed. In this paper, we present a comprehensive survey of 
evolutionary achievements of eigenvalue based spectrum sensing algorithms. The correlation 
between signal samples due to oversampling, multipath or multiple receivers gets reflected on 
the eigenvalues of the covariance matrix. It has been observed that different combinations of 
eigenvalues are used as test statistics and the distribution of eigenvalues and derivation of 
probability of detection is based on RMT (Random Matrix Theory). The main advantage 
offered by these algorithms is their robustness to noise uncertainty which severely affect 
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other methods. Furthermore, they do not require accurate synchronization. These detections 
can be used for different signal detection applications without any prior information of signal 
or noise. To evaluate the performance of eigenvalue based spectrum sensing techniques under 
fading channels, we have simulated maximum to minimum eigenvalue based Detection 
(MME) and maximum eigenvalue based detection (MED) for Rician fading channel. 
Simulation results shows that MME is much better than MED. 
 
Keywords: Cognitive Radio, Maximum to Minimum Eigenvalue Based Detection, 
Maximum Eigenvalue Based Detection, Probability of detection, Random Matrix Theory, 
Spectrum Sensing. 
 
1. Introduction  

The increasing demand of more and more spectrum for wireless communication has led 
to extreme spectrum scarcity. The growing spectrum scarcity problem is not because of 
spectrum band insufficiency; rather it is because of the inefficient utilization of the available 
spectrum bands [1]. In static spectrum allocation, all of the radio spectrums are allocated to 
specific services and applications. However, it has been observed that these spectrum bands 
are mostly underutilized. To improve the spectrum utilization, Cognitive radio is an emerging 
solution. Cognitive radio is a agile adaptable transceiver which intelligently changes its 
communication parameters according to the user demands for efficient utilization of radio 
spectrum [2, 3]. This innovative concept makes the use of vacant spectrum bands possible.  
Spectrum sensing is one of the most important tasks to evaluate by cognitive radio. It detects 
the white spaces in spectrum bands and shares it with other unlicensed or secondary users. 
Multipath fading, time dispersion, shadowing, noise or interference level complicates the 
spectrum sensing. Spectrum sensing is more difficult in those frequency bands where 
licensed or primary user can adapt distinct transmission standards, for e.g. ISM band. 
Reliable and efficient spectrum sensing techniques are needed in order to detect the presence 
of primary users and vacant spaces. This is because the secondary users need to adjust their 
operating parameters in order to exploit the unused spectrum. Spectrum sensing techniques 
can be classified into two main categories non-blind sensing and blind sensing techniques. 
Priori information of licensed user is necessary for the non-blind techniques and is not 
necessary for blind spectrum sensing techniques. Energy detection (ED) is a spectrum 
sensing technique where the received signal energy is calculated and compared with the 
threshold [4]. Threshold function calculation is based on noise power. Therefore incorrect 
calculation of noise energy leads to false alarm. Concerning the required knowledge of the 
noise energy, ED is semi-blind detection technique. Cyclostationary detection (CSD) requires 
information of cyclic frequencies of received signal detection [5]. The advantage of this 
technique is that it can detect the signals at very low SNR. The matched filter detection 
estimation is based on knowledge of received signal signaling feature [6]. Concerning the 
required knowledge of the signal characteristics, Cyclostationary detection and matched filter 
are non-blind techniques [7].  

Contribution: Most of the detection techniques in the literature require prior knowledge 
of primary user signal. These techniques are explored in [7]. To overcome the shortcomings 
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of non-blind technique different eigenvalue based spectrum sensing techniques have been 
proposed in the literature. These detection techniques require only the covariance matrix of 
the received signal rather than signal or noise information. Eigenvalues are calculated from 
the received covariance matrix. Various methods are available to calculate eigenvalues 
namely power method [8], inverse power method [8], fast cholesky method [8] and fast 
iterative methods [9]. In this paper, we give a survey of different eigenvalue based spectrum 
sensing techniques and also analyze MME and MED performance under Rician fading 
channel which is not estimated in [10].  

Different eigenvalue based detection methods are MME [10], energy with minimum 
eigenvalue (EME) [10], maximum minus minimum eigenvalue (MMME) [11], difference of 
means of eigenvalue (DME) [11], LE i.e. MED [12], minimum eigenvalue (ME) [13], two 
stage spectrum sensing detection (ED and CMME) [14], energy and eigenvalue based 
detections combined as fully blind and self adaptive [15]. The implementation of this dual 
stage detection scheme has been carried out using GNU radio and USRP. Here the 
performance has been analyzed under real noise and interference conditions [16]. 

The rest of the paper is structured as follows. Section II gives mathematical analysis for 
distinct eigenvalue based detections. Section III explains about methodologies for various 
eigenvalue based detections. Section IV shows comparative and diagrammatic representation 
of distinct eigenvalue based spectrum sensing techniques and evolution of it. Section V 
explains Rician fading channel for MME and MED. Section VI explains the results analysis 
of various detections and simulation result evaluation for MME and MED. Section VII 
concludes the work and presents some future research improvement. 

 
 
2 . Mathematical Analysis for Eigenvalue Based Detections 
 

Binary hypothesis is used for signal detection. Binary hypothesis testing is a method in 
which we claim the presence or absence of signal. There are two hypothesis namely 0H or 
null hypothesis and 1H or one hypothesis. 0H is the representation for signal that are not 
present and 1H is the representation for signal and noise both are present. Mathematically 
this hypothesis can be represented as, 

                             )(0 nxH =                                 (1)  

                            )()(1 nnxH η+=                                (2) 

where, x(n) is signal and )(nη is noise. Two probabilities i.e. probability of detection 

( )dP  and probability of false alarm ( )faP  are of interest for detection. The probability of 

false alarm defines at the null hypothesis and probability detection at the hypothesis one. 

Probability of detection also can be defined as faP−1 . 
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2.1 System Model 
 

In order to understand the approach used in adopting RMT for Signal detection, the 
following system model is used. Considered we are interested in continuous time signal can 
be given as, 

                         )()()( ttstx η+=                                 (3) 

where, )(ts is continuous time signal, )(tη is noise. 

Continuous time signal can be sampled with sampling frequency Fs and sampling period is 
Ts=1/Fs. The Sampled signal can be given as, 

                       )()()( nTsnTssnTsx η+=                             (4) 

The notations )()( nxnTsx = , )()( nsnTss = , )()( nnTs ηη = are used for simplicity. 

The received signal for MIMO system can be given as, 

                       ∑∑
= =

+−=
P

j

N

k
jj

ij

nknskhnx
1 0

)()()()( η                      (5) 

where, P is the number of source signals i.e. number of transmitters, )(khj is channel 

response and ijN is the order of the channel. 

Corresponding notations expressed as in (6), (7) and (8) 

                      T
M nxnxnxnx )](..,),........(),([)( 21=                       (6) 

                       T
M nnnn )](..,),........(),([)( 21 ηηηη =                      (7) 

                      T
Mjjjj nnhnhnh )](..,),........(),([)( 21 η=                     (8) 

where, M is the oversampling factor. Considering smoothing factor i.e. consecutive 
windows of length L , we can then have an estimation of the sample covariance matrix of the 

received signal )(nx as , 

                       )(*)(1)(
2

1

† nxnx
N

NR
NsL

Lns
sx ∑

+−

−=

=                         (9) 

where, sN is number of samples and )(*)()( nHnsnx j η+= . It can be further expressed as,  
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 (10) 

where, ∑
=

=
P

j
jNN

1
. The matrix dimensions mostly used to calculation given as, 

( ) ( ) ( ) ( )1,1,1, )()(*)(
)(,

MLPLNjML nnsHnx
PLjNML

η+= +
+

 (11) 

 For e.g. If 4=M , 8=L , 9=N , 2=P then matrix dimensions will be,  

( ) ( ) ( ) ( )1,321,341,32 )()(*)(
34,32

nnsHnx j η+=  (12) 

 
2.2 Eigenvalue Estimation Techniques 
 

Maximum and minimum eigenvalues can be calculated from the received signal 
covariance matrix. Its complexity increases because of the decomposition of the covariance 
matrix and the computation of eigenvalues. The computation of eigenvalues is a still open 
field for research work. Numbers of techniques are available to calculate eigenvalues namely 
power method [8], inverse power method [8], fast cholesky method [8] and fast iterative 
methods [9]. Comparative analysis of these methods is shown in Table 1. The impact of M , 

L and sN on the computational complexity is explored in [8 ,9].  
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Table1. Estimation of computational complexities to calculate eigenvalues 
Techniques to Estimation 

Eigenvalues 
Computational complexity 

Traditional Methods 
(MME and EME) 

Computational complexity of the sample covariance matrix 
= ( )sNLM 22 multiplications + ( )( )122 −sNLM addition. If covariance matrix 

is block Toeplitz and Hermitian matrix, then computation complexity 
= ( )sMLN  multiplications + ( )( )1−sMNML additions. Complexity for 
calculation of the eigenvalues = ( )33LMO  (multiplications + additions). 

Then the total computational complexity of traditional method = 
( ) ( )33LMOMLNs + . 

Power Method It approximates the largest eigenvalue of a symmetric positive definite 
matrix.  
Computational complexity of power method= ( )kMLO  

where, k is the number of operations under a particular error threshold. 
Inverse Power Method It approximates the smallest eigenvalue without sorting and finding all 

eigenvalues.  
Computational complexity of inverse power method = ( )44LMO  using 

naive gaussian elimination. If covariance matrix is Hermitian, then 
computational complexity = ( )333LMO . Therefore the total complexity 
= ( )33LMO .  

Fast Cholesky Method Various well-known algorithms like Levinson and Schur algorithm 
which factorize Toeplitz with computational complexity less than 
( )22LMO . The Schur algorithm exploits parallel computing to reduce its 

computational latency and detail algorithm explained in [8] finding 
Cholesky factor of Toeplitz matrices. 

Fast Iterative Methods Total computational complexity of fast iterative 
methods= ( )LMOLNM s

32 + . It improves the computational complexity 
from ( )3LO  to ( )LO . 

 

3. Methodologies for Eigenvalue Based Detections 
 
3.1 Maximum-Minimum Eigenvalue detection 
 

MME and EME are used to perform signal detection without prior knowledge of signal 
or noise power. MME detection compares the threshold with the ratio of the maximum 
eigenvalue to the minimum eigenvalue. EME detection compares the threshold with the value 
of the ratio of the average signal power to the minimum eigenvalue. Unlike ED, here the 
threshold is not based on noise power. In these algorithms, the threshold is estimated by using 
number of samples, smoothing factor and false alarm probability [10]. 
 
Step 1. Compute the sample covariance matrix of the received signal. 
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                       )(*)(1)(
2

1

† nxnx
N
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NsL

Lns
sx ∑

+−

−=

=                         (13) 

Step 2. Calculate the maximum and minimum eigenvalue of the sample covariance matrix i.e. 

maxλ and minλ .  

Step 3. Computation of the threshold can be given as, 

                
( )
( )

( )
( ) 










−

+
+

−

+
= − )1(1* 1

2

2

fa
s

s

s

s PF
MLN

MLN

MLN

MLN
γ              (14) 

      where, 1−F is Tracy-Wisdom distribution.  
 
Step 4. Compare the ratio of maximum eigenvalue to minimum eigenvalue with the 
threshold, if γλλ >minmax then licensed user exists otherwise channel is vacant for 
unlicensed users. 
 
Tracy-Widom Distribution: To study the eigenvalue distributions of a random matrix the 
joint probability density function (PDF) of ordered eigenvalues of a Wishart random matrix is 
used. The expression of the PDF is very complicated. To address this problem, the 
Tracy-Widom distribution is used. The distribution function is defined as, 

                      ( )







−−−= ∫

∞

t

duuquuqtF )()1()(
2
1exp)( 2

1                 (15) 

where, q(u) is the solution of the nonlinear Painleve II differential equation, 

                           )(2)( 3 uquuqq +=′′                             (16) 

It is difficult to evaluate. Therefore tables or MATLAB codes are used to compute it. Table 2 

gives the values of 1F at some points. 

Table 2: Numerical Table For the Tracy-Widom Distribution of Order 1 
t -3.90 -3.18 -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02 
F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99 

 
Step 5. The probability of detection of the MME detection is, 

                  








 −−+
−=

υ
µσρργγ 2

1
1

/)(*
1 nMLss

d

NN
FP                  (17) 
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       where, MLρ and 1ρ are minimum and maximum eigenvalues of signal and channel 

respectively i.e. ( )†HHRs , 2
nσ is noise variance. 

Step 6. The probability of false alarm of the MME detection is, 

                    
( )
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


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11
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fa                       (18) 

      where, ( )21 MLNs +−=µ , ( )
3/1

1
1

1*1 







+

−
+−=

MLN
MLN

s
sυ . 

 
3.2 Energy with Minimum Eigenvalue Detection 
 
Step1. The same as given in MME detection. 

                     ( ) ∑∑
=

−

=

=
M

i

N

n
is

s

nxNT
1

1

0

2)(                                  (19) 

Step2. Calculate the average power of the received signal ( )sNT and the minimum eigenvalue 

minλ of the received covariance matrix. 

Step 3. Computation of threshold can be given as, 

                       ( ) 
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γ             (20) 

      where, Q(.) is the inverse Q function. 
Step 4. Compare the ratio of average power to the minimum eigenvalue with the threshold, if 

( ) γλ >minsNT then licensed user exists otherwise licensed user does not exist. 

Step 5. For the EME method, the probability of detection is,  
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      where, (.)Q is the Q function, (.)rT is the trace of a matrix. 
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Step 6. For the EME method, the probability of false alarm is, 

                           
( )













 −−
=

s

ss
fa N

MNMLNM
QP

2

2
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           (22) 

 
3.3 Maximum Minus Minimum Eigenvalue Detection 
 

For higher noise, MME performance gets affected by SNR. To tackle this issue, MME 
can be modified as MMME. In MMME detection, maximum minus minimum eigenvalue is 
compared with the threshold for test static [11]. 
 
Step1. The same as given in MME Detection. 
Step 2. Calculate the maximum and minimum eigenvalue from the covariance matrix i.e. 

maxλ and minλ and compute MMMET , 

                      minmax
min

maxln λλ
λ
λ

−=







=MMMET                        (23) 

Step 3. Compare MMMET with the threshold, if γ>MMMET then licensed user exists else 

channel is available for unlicensed users. 
 
3.4 Difference of Means of Eigenvalue Detection 
 

A typical phenomenon to decrease noise is to average over multiple values. MMME 
does not exploit this phenomenon. Therefore, MMME can be modified as DME detection. In 
DME detection, difference of means of eigenvalue is compared with the threshold for test 
static [11]. 
 
Step1. Compute TDME using given equation, 

               ∑ ∑
= +=









−

−=
1

11 11
1

ˆ1ˆ1)(
N

i

ML

Ni
i

s
DME NMLN

NT λλ                         (24) 

      where, λ̂ are eigenvalues. The mean of 
0,HDMET and 

1,HDMET can be minimized and 

maximized respectively by setting the value of 1N . Therefore it is necessary to set the value 

of 1N  in an analytic way as it has a great impact on DME performance.  
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Step 2. Calculate the threshold γ and Compare DMET with the threshold, if γ>DMET then 

channel is occupied else channel is vacant and available for unlicensed users. 
 
3.5 Maximum Eigenvalue Based Detection for Correlated Noise 
 

Most of the eigenvalue based techniques assume the presence of white noise at the 
receiver. However, in practice, noise can be correlated because of imperfections in filtering 
interference or oversampling operations. Therefore maximum or large eigenvalue based 
spectrum sensing is evaluated for correlated noise. LE detection compares the ratio of 
maximum eigenvalue to noise power with the threshold. It is observed that the threshold 
calculated for uncorrelated scenario when applied to correlated scenarios, the faP value gets 
deviated from the targeted faP value. To address this problem, threshold function is derived 
for correlated noise [12]. 
 
Step1. The same as given in MME detection. 

Step2. Calculate the maximum eigenvalue of the covariance matrix i.e. maxλ and noise power 

2
nσ . 

Step 3. Compute the threshold for correlated noise. 

                         
3

2

3
21

2
2 *)1(

s

csfac

N

NPF υσ
γ

+−
=

−

                     (25) 

      where, 1
2
−F  is Tracy-Widom distribution of order 2, 2

cσ and cυ can be calculate as 

given in [12]. 
 
Step 4. Compare the ratio of maximum eigenvalue to noise power with the threshold, if 

γσλ >2
max n  then signal is present otherwise signal is absent. 

 
Step 5. The probability of detection of the LE detection is, 
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Step 6. The probability of false alarm of the LE detection is, 
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3.6 Minimum Eigenvalue Detection 
 

Practically, at a particular SNR level the fluctuation of maximum eigenvalues is always 
more than minimum eigenvalues. This results in more minimum eigenvalues falling above its 
threshold. This in turn leads to increased probability of detection than maximum eigenvalue 
based detection. In ME detection, the ratio of the minimum eigenvalue to noise power is used 
as the test statistic [13]. 
 
Step 1. The same as given in MME detection. 

Step 2. Calculate the minimum eigenvalue of the covariance matrix i.e. minλ . 

Step 3. Compute the thresholdγ and noise power 2
nσ . (Theoretically threshold is 1). 

Step 4. Compare the ratio of minimum eigenvalue to noise power with the threshold, if 

γσλ >2
min n then signal is present otherwise signal is absent. 

 
3.7 Two Stage Spectrum Sensing Detection 
 

A combination of two spectrum sensing techniques which explores the advantages of 
each individual detector can be used for increasing sensing efficiency. ED performance is 
better at high SNR, whereas CSD and eigenvalue based detection perform better at low 
SNRs. Therefore in dual stage detection, ED is used as first stage and eigenvalue or CSD is 
used as second stage. There is a novel two stage spectrum sensing detection where ED is used 
as coarse sensing and CMME (Combination of Maximum and Minimum Eigenvalue) is used 
as fine sensing. Here a dual stage threshold parameter is designed for the maximization of 
detection probability [14]. 
 
Step 1. Compute the energy of received signal. 

                               ∑
=

=
cM

n

c nxD
1

2)(                              (28) 

      where, cM is the number of samples in ED. 

Note: ( )c. shows first stage detection and ( ) f. shows second stage detection.  

Step 2. Threshold for ED detection can be given as, 
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 where, K is secondary or unlicensed user and )1( ≥K , ( ) f
fa

c
fa

c
fa PPP *1−=β , 11 2 −=′ γγ . 

Step 3. Compare the energy of received signal with the threshold, if γ>cD then licensed user 

is present else switch to the fine sensing stage. 
 
Step 4. For the ED method, the probability detection is 
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      where, 2
sσ is signal variance. 

Step 5. For the ED method, the probability of false alarm is 
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Step 6. Calculate the maximum and minimum eigenvalue of the covariance matrix i.e. 

maxλ and minλ . 

Step 7. For the MME method, computation of threshold can be given as, 

                           ( )( )22 ,max
2

γγ
γ

fPd=                           (32) 

       where, 2γ and ( )2γf can be calculated as given in [14]. 

Step 8. ( )minmaxmax λλλ − is compared with the threshold, if ( ) 2minmaxmax γλλλ >− then 

licensed user exists otherwise channel is vacant for unlicensed user. 
 
Step 9. For the CMME method, the Probability detection is, 
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Step 10. For the CMME method, the probability of false alarm is, 
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3.8 Energy and Eigenvalue-Based Combined Fully-Blind Self-Adapted Detection 
 

Dual stage detection of ED and MME can be modified as fully blind and self-adaptive. 
Noise estimation is carried out at the MME detection and this information is fed back to 
energy detector to adjust its detection threshold [15]. 
 
Step 1.Compute the energy of received signal. 

                          ∑
=

=
sN

n
nxX

1

2                              (35) 

Step 2.For the ED method, threshold can be given as, 

                    212 )(*2 zs
c
fazs NPQN σσρ += −                  (36) 

      where, 22
nz σσ =  

Step 3. The energy of received signal is compared with the threshold, if ρ>X  then 

licensed user is present else switch to the fine sensing stage. 
 
Step 4. For the ED method, the probability detection is,  

                          ( )
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Step 5. For the ED method, the probability of false alarm is, 
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Step 6.Compute the sample covariance matrix of the received signal. 

Step 7.Calculate the maximum and minimum eigenvalue from covariance matrix i.e. maxλ and 

minλ . 

Step 8. For the MME method, computation of threshold can be given as, 
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Step 9. Compare minmax λλ with the threshold, if γλλ >minmax then licensed user exists 

otherwise channel is vacant for unlicensed user. 

www.macrothink.org/npa 70 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2016, Vol. 8, No. 2 

Step 10. Probability of detection is same as MME detection. 
Step 11. Probability of false alarm can be calculated by rearranging the threshold function. 
Step 12. Estimate Noise at the MME detection and go to step 1. 
 
4. Comparative Analysis  
 
4.1 Comparative Table for Distinct Eigenvalue Based Detection 
 

Table 3: Comparison of Eigenvalue Based Detection Algorithms 
Detection 
Methods 

Comparison Parameters 
Computational Complexity Accuracy 

MME ED requires
sMN multiplications+ ( )1−sNM additions. MME 

requires sLNM 2 multiplications + ( )12 −sNLM  additions for 

calculation of covariance matrix and ( )3MLO (multiplications 

+additions) for the calculation of eigenvalues. Computational 

complexity of MME is ML times more than ED. 

More accurate than ED even if 
it does not require any prior 
information about signal and 
noise power. 

EME Computation complexity of EME is same as MME.  Highly accurate only when 
average power is calculated 
correctly. 

MMME 
 

Computation complexity of MMME is almost same as MME. Accuracy is more than MME at 
high SNR also. 

DME 
 
 

1N has a huge effect on the performance of the DME detector. 
Therefore the specific choice of 1N increases computational 
complexity of DME. 

Accuracy is more than MME 
and MMME. 

LE Computational complexity of LE is more than MME, EME, 
MMME and DME as threshold calculation of correlated noise 
is depend on correlated noise power and cυ . 

It gives better accuracy for 
uncorrelated noise than 
correlated noise. 

ME 
 

ME requires ( )sNLO 2 operations for calculating covariance 
matrix and ( )3LO for calculating eigenvalue. Total 
complexity= ( ) ( )32 LONLO s +  . 

Dependency on the accurate 
calculation of noise power 
decreases the accuracy of ME 
than MME, MMME and DME 

ED+CMME 
 

ED +CMME includes computational complexity of ED and 
CMME which is greater than MME, MMME, DME, EME and 
LE. 
 

Accuracy is better than single 
stage detection technique as it 
exploits advantages of ED and 
MME detector. 

Fully-Blind 
and Self 
Adaptive 
ED+MME 
 

ED requires 
sN  multiplications and ( )1−sN  additions. Total 

complexity of ED = ( )sNO . MME requires sN  multiplications 
and ( )1−sN additions for sample covariance matrix 
calculation and ( )3LO operations for finding eigenvalues. 
Therefore, total complexity MME = ( ) ( )3LONO s + . Total 
complexity=(ED+MME) complexity 

Accuracy is more than 
ED+MME detection technique. 
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4.2 Comparative Diagrams 
 

Different eigenvalue based spectrum sensing algorithms are shown in Fig.1. Different 
combinations of eigenvalues are used for signal detection. For each of the detectors, a 
test-statistic T is given. The test static compares with the threshold. On the basis of this result, 
detector decides presence or absence of licensed user. 

 

If γ>T then 1H  

If γ<T then 0H  

 
if the test statistic (T) is greater than the threshold , then licensed user is present. If it is lesser, 
then licensed user is not present. 

λmax/λ
min  

λmax-
λmin  

ED+λ
max-
λmin  

Compare 
with 
Threshold

Calculate 
λmax &  
λmin

λmax 

λmin 

Signal  

Noise 

Test Statics

+++
10orHH

Figure 1: Methodology for Different Eigenvalue Based Spectrum Sensing 
 

Fig. 2 shows the evolution of eigenvalue Based spectrum Sensing Techniques. The first 
level represents MME and EME detection to perform signal detection fully blind. The second 
level represents modification of MME as MMME and DME to overcome disadvantage of 
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MME. The third level represents LE detection for correlated noise to get targeted probability 
of false alarm value. The fourth level represents ME to avoid fluctuation of maximum 
eigenvalue over particular value of SNR. The fifth level represents two stage detection to get 
maximum probability of detection over individual detection. 
 

       

ED+
CMME
(2015)

ME
(2014)

LE
(2014)

MMME and DME
(2013)

MME and EME
(2009)

To modify detection as  self-adaptive and 
fully blind

To overcome disadvantage of  maximum eigenvalue 
fluctuation at specific value of SNR

To  analyze eigenvalue based detection for 
correlated noise

To improve performance of detection at the  
values high SNR

To perform signal detection without any 
priori knowledge

 
Figure 2: Evolution of Eigenvalue Spectrum Sensing Techniques 

 

5. Rician Fading Channel for MME and MED 
 

Due to the reflection, diffraction, scattering etc. the strength of the received signals 
follow the Rician distribution, we called this channel as Rician fading channel. It can be 
described at the j th time instant as,  

                              22 )()( jjj bah ++= ρ                       (40) 

where, ρ is the amplitude, ja and jb are two Gaussian random variables with variance 

2
0σ and mean zero. The PDF (Probability Density Function) of Rician channel can be given 

as,   
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                            ( )
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where, (.)0I is the zero-order modified Bessel function of the first kind. 

To analyze simulation performance of MED and MME under Rician fading channel in 
MATLAB, we have generated the uncorrelated fading sequences of the Rician channel 
distribution. The mean-squared value of the Rician distribution is 12 2

0 +Kσ . We generally 
require the Rician distribution with unit mean-squared value to make the signal power and 
SNR corresponding. Therefore (37) can rewrite as, 
 

                                
( )

)1(2
2
+

++
=

K
bKa

h jj
j                      (42) 

where, K is Rician factor. It can be defined as, 2
0

2 2σρ=K  

 
6.  Discussion 
 

In this section, we will discuss the effect of number of samples and smoothing factor 
on dP  and faP of different eigenvalue based spectrum sensing detections. For ME detection 
the dP increases with the number of samples more rapidly than MME detection. For the faP , 
eigenvalue based algorithms do not change much with number of samples. It is seen that both 

dP and faP of the MME slightly increase with L , but the effect of L  on dP of ME detection 
is comparatively greater than MME. For LE method, the probability of detection improves 
the sensing performance and achieves perfect sensing performance above SNR value of 
10dB. MMME detector has better sensing performance than MME, while the DME detector 
shows the best performance over MMME and MME. The dP of DME is comparatively less 
than the dP of two stage detection. The probability of detection performance of two-stage 
spectrum sensing using ED and CMME is better compared to two-stage spectrum sensing 
using ED and CSD. ED and CMME gives 0.79 dP while ED and CSD gives 0.59 dP at -30dB. 
 
6.1 Simulation Result Analysis 
 

In the simulation analysis, we use the randomly generated signal as the primary signal 
through Rician fading channel, and then simulate it in MATLAB. We compare and analyze 
the simulation results of MME and MED. We set the matrix length as 8=L , use the number 
of samples 100000=sN , vary SNR from -20 to 0 dB and simulate 100 Monte Carlo 
realizations.  
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               Figure 3. SNR vs. Probability of detection for MME and MED 

 
Fig. 3 shows the probability of detection dP results for the MED and MME detection in 

Rician fading channel. The dP of MME is better than the dP of MED. Numerical evaluation of 
comparison of MME and MED is given in the Table 4. 
 

Table 4. Numerical analysis of ROC curve  

SNR (dB) 
Probability of Detection when faP =0.1 

MME MED 

-20 0.8 0 
-18 1 0 
-16 1 0.1 
-14 1 1 
-12 1 1 
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7.  Conclusion 
 

There are distinct eigenvalue based spectrum sensing algorithms based on eigenvalues of 
the covariance matrix of the received signal. Random matrix theory is used to set the 
thresholds and obtain the probability of detection. These algorithms give better performance 
than other spectrum sensing algorithms. Eigenvalue based detection is combined with other 
detection methods to maximize the probability of detection and to explore advantages of each 
individual detection method. Further, this dual stage detection method can be made self 
adaptive and fully blind with the help of noise power estimation feedback. The literature 
shows a major focus on the implementation aspects of spectrum sensing rather than sensing 
time. To decrease sensing time a multi-taper two stage spectrum sensing i.e. combination of 
energy and eigenvalue based detection can be used. Multi-taper improves sensing time and a 
dual stage method maximizes the probability of detection hence improving the overall 
performance. Furthermore, different eigenvalue based spectrum sensing algorithm 
performance can be evaluated for different fading channel conditions. 
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