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Abstract 

The linear-quadratic flexible accelerator model has been a staple for empirical analysis within 

the inventories literature. A key assumption of the model is that sales are a proxy for demand, 

thus inventories are generated in instances where production does not equilibrate with demand. 

We seek to improve upon the benchmark linear-quadratic model by introducing firm orders, 

thus allowing for differentiation between realized and expected demand. Estimation results 

suggest that the omission of orders heavily biases the coefficient sign and magnitude associated 

with sales. Furthermore, the estimated adjustment speed of orders is both larger in magnitude 

and statistical significance than for sales. The disparity in the rates of adjustment between 

expected and realized demand provides a new contribution towards understanding the 

adjustment speed puzzles pervasive in the literature. Finally, the addition of orders provides 

stronger evidence of a cointegrating relationship in a trivariate system of equations versus a 

standard bivariate system containing strictly inventories and sales. However, exogenous order 

shocks do not seem to meaningfully impact inventory investment, nor sales. Furthermore, 

forecast error variance for sales, and inventories are not well explained by orders. These results 

suggest that orders are important in explaining the underlying data generating processes for 

sales, and inventories, as well as the long-run relationship between inventory, and sales, but 

offer little in forecasting potential. 

Keywords: inventories, M3 data, persistence, cointegration, linear-quadratic 
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1. Introduction 

The linear-quadratic (LQ) model is the empirical workhorse of the inventories literature. 

Originally described in Holt (1960), the LQ model characterizes a cost-minimizing firm's 

inventory investment decision. The LQ model has been extended through works like Ramey 

(1989), Blanchard (1983), M. Lovell (1961), M.C. Lovell (1962), West (1986), Humphreys et 

al. (2001) and Iacoviello et al. (2011). Beyond journal publications, economic handbook 

chapters like Ramey & West (1999) and West (1993), and surveys like Blinder & Maccini 

(1991) provide an exhaustive synthesis of the inventories literature and the LQ model's history. 

Despite the maturity of inventories research, pervasive inventory puzzles described in Maccini 

et al. (2015) and Wen (2011) fuel new works within the literature alongside growing interest in 

global value chains and supply chain distortions. Furthermore, on average from 1997 through 

the present day, the dollar value of all inventories held by manufacturers and retailers as a share 

of real GDP hovers around 11.3%.(Note 1) Given the sheer volume of inventories held by the 

private sector, understanding firm incentives for holding inventories in spite of their cost 

burdens, and their potential relationship to the business cycle are of importance researchers, 

firm managers, consumers, forecasters, and policymakers alike. 

By design, the LQ model is intended to capture key stylized facts about inventory behavior and 

generalize the mechanisms driving a representative firm’s motivations to hold inventories. 

More importantly, however, the LQ model serves to relate micro-level behaviors of firms to 

macro-level business cycle fluctuations. As noted in Ramey & West (1999), at a 

microeconomic level, inventories tend to be a stabilizing force through smoothing production 

in environments of fluctuating demand; however, conversely, at a macroeconomic level, 

inventories tend to be destabilizing via the accelerator principle. 

  

Figure 1. Inventories, and the Inventory-to-Sales Ratio 

These polarized facts introduce a core paradox at the heart of the inventories literature: 

inventories are a stabilizing force at the micro-level and destabilizing force at the macro-level 

simultaneously. Further highlighted in Ramey & West (1999), inventories move in a procyclical 
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manner, while the inventory-to-sales ratio is countercyclical and highly persistent. Figure 1 

illustrates these stylized facts depicting real manufacturing inventories over time and the real 

manufacturing inventory-to-sales ratio. 

The validity of these stylized facts seems to hold up until the Financial Crisis and subsequent 

Great Trade Collapse described in Bems et al. (2013) who argue that during the Great Recession, 

the collapse in aggregate expenditures was largely concentrated in durable goods leading to an 

amplification of firm inventory adjustments contrary to the norm. We can relate these stylized 

facts to a more technical framework described by seminal pieces like Ramey & West (1999), 

West (1993) and Hamilton (2002). Specifically, these pieces aim to use the LQ model to define 

a firm's optimum inventory investment decision, Δ𝐻𝑡, in a reduced form, which is expressed 

as: Δ𝐻𝑡 = 𝐴0 + 𝐴1𝐻𝑡−1 + 𝐴2𝑆𝑡−1 + ϵ𝑡. (Note 2) 

Traditionally, the equation for inventory investment is used in combination with a cointegrating 

equation and the data generating process (DGP) for sales, 𝑆𝑡 , to produce a vector error 

correction model (VECM) from which adjustment speeds can be measured. Notwithstanding 

the system of equations that can be estimated from the LQ model, the inventory investment 

equation on its own is quite telling. In particular, the literature predicts that 𝐴1  should be 

negative and highly significant to capture the high degree of persistence in 𝐻𝑡−1 . More 

interestingly, however, the model would predict 𝐴2 to be positive and significant. In the retail 

setting, 𝑆𝑡−1 > 0 is sensible as it would imply that as firms observe increasing sales, they 

accelerate their inventory positions to meeting heightened demand. However, as stressed in 

Blinder & Maccini (1991), and reinforced by Blanchard (1983), M. Lovell (1961) and M.C. 

Lovell (1962) among many others, most inventories lie in the manufacturing sector, thus 𝑆𝑡 

from a practical standpoint is more akin to shipments, rather than sales strictly speaking. (Note 

3) 

Beyond these points, as noted in the operations research and supply chain management fields, 

there is very often lead-time between when an order is placed, a good is produced, and then 

finally fulfilled in the form of a shipment. Typically, new orders trigger the production of new 

goods at which point they go through the production process and are eventually shipped. This 

gap of time between the start of production and fulfillment prevalent in the manufacturing 

sector poses potential complications for the traditional solution to the LQ model. For instance, 

if one cannot distinguish between newly placed orders and shipments, it is likely 𝐴2 will be 

heavily biased absorbing both the effects of realized demand and expected demand. 

Furthermore, as highlighted by Maccini et al. (2015) and Wen (2011), the cointegrating 

relationship between inventories and sales has been considerably weaker in recent decades 

despite the assumption of cointegration underlying the LQ model's foundations put forth in 

Hamilton (2002). On the other hand, if the cointegrating relationship between inventory and 

sales has deteriorated, then why is the inventory-to-sales ratio (ISR) still above unity and highly 

persistent? Furthermore, why do we still see inventories move in a procyclical manner with the 

business cycle along with sales? In a bivariate VECM, we would expect the stochastic trend 

shared between inventory and sales to have also have a long-run equilibrium that both 

inventories and sales should adjust to if there is short-run disequilibrium. Again, we posit that 
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perhaps there is a significant omission in the underlying DGP or sets of DGP's in the LQ model. 

Specifically, we believe that one must distinguish between orders and shipments in 

manufacturing to potentially rectify these issues. 

Beyond the history of the LQ model within the field of economics, both orders and inventories 

of substantial interest to practitioners within industry for forecasting macroeconomic 

conditions. (Note 4) Furthermore, while not widely discussed within the economics literature, 

operations researchers have done well to point out the inefficiencies in global supply chains 

that can arise from order volatility as highlighted in the seminal work of Lee et al. (1997). Lee 

et al. (1997) highlight that the phenomena known as the Bullwhip Effect can have dire 

consequences to firm and industry performance through excess (or inadequate) inventory 

investment, loss of sales, misguided capacity plans, and forecast inaccuracies.  

In particular, the Bullwhip Effect manifests itself as a higher relative volatility of new 

manufacturer orders relative to sales. Given the reliance and growing interest in the economics 

of highly integrated value chains today, and in the wake of Covid-19's disruption to global 

supply chains, the LQ model with some modifications provides a lens through which 

economists and forecasters can begin to view supply chain distortions that is still structurally 

consistent its classic microfoundations and features.(Note 5) Put simply, the realities, and 

growing attention to global value chains provides new opportunities for research on inventories, 

and its foundational models to better explain wider supply chain phenomena, and demand 

volatility, particularly in the manufacturing sector.  

 

2. Model 

Consider a variation of the LQ model described by Hamilton (2002) and Herrera (2018). The 

representative firm maximizes expected profit subject to a budget constraint with prices, Pt, 

taken as exogenous. Our goal is to solve for inventory investment, ΔHt, such that it can be 

estimated in a reduced form as both a single-equation model, and as a system of equations 

alongside the data generating process for shipments, St, and orders, Ot. The firm’s objective 

function is described by equation (1). 

Max
(Qt, Ht) {E0 ∑ βt(PtSt − Ct)

∞

t=0

} (1) 

This objective function is further constrained by equations (2), and (3), respectively. 

Ct =
1

2
{a0(ΔQt)2 + a1[(Qt − Uct)2 + a2(Ht−1 − a4 − a3St)2]} (2) 

Qt = St + ΔHt (3) 

Finally, to close out the model’s setup, the following laws of motion for sales, and orders, 

respectively, by equations (4), and (5). 

St = As + γ1St−1 + γ2Ot−1 + est (4) 
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Ot = Ao + ω1Ot−1 + eot (5) 

The first-order condition of our objective function with respect to Ht yields equation (6).  

Et [a0(ΔQt  −  2 βΔQt+1  +  β2 ΔQt+2)  +  a1(Qt  −  Uct)  −  βa1(Qt+1  −  Uct+1)

+ βa1 a2(Ht  −  a4  −  a3 St+1)] = 0
(6) 

Under the assumption that adjustment costs are equal to zero (a0 = 0), and dividing by a1, we 

arrive at equation (7). 

Et[(Qt − Uct) − β(Qt+1 − Uct+1) + βa2(Ht − a4 − a3St+1)] = 0 (7) 

Assuming that St, and Uct are integrated at an order of one, or simply I (1), and by leveraging 

our production identity, and sales generating process, described by equations (3), and (4), 

respectively, we can simply equation (7) further (by implication of St, and Uct being I(1), 

we have Uct = St + vct). Beyond this, we can save some additional algebra by recognizing 

that vct+1, and est+1 are both ∼ IID(0, σ2), which implies that Etect+1 = Etest+1 = 0. With 

all this in mind, we arrive at equation (8) after some manipulation (8). 

Et[ΔHt − vct − βΔHt+1 + βa2(Ht − a4 − a3As − a3γ1St − a3γ2Ot)] = 0 (8) 

To simplify further, let −a4 − a3As = ϕ0 , −a3γ1 = ϕ1 , and −a3γ2 = ϕ2 . This gives us 

equation (9). 

Et[ΔHt − vct − βΔHt+1 + βa2(Ht + ϕ0 + ϕ1St + ϕ2Ot)] = 0 (9) 

From the above equation, we can define our cointegrating equation as wt = Ht + ϕ0 +

ϕ1St + ϕ2Ot . Note that we assume there is only one cointegrating relationship (long-run 

relationship) shared between all three variables in our equation. We will confirm this later with 

data. 

Via substitution, we can rewrite equation (9) by plugging in our cointegrating equation and 

arrive at: Et[ΔHt − βΔHt+1 + βa2wt − vct] = 0. It is further worth noting that ΔHt = Δwt −

ϕ1ΔSt − ϕ2ΔOt. As a result of this, we can further simplify our result. After collecting all terms 

common to wt, and rearranging, we arrive at equation (10), which can be simplified further to 

equation (11). 

Et[(1 + β + βa2)wt − wt−1 − βwt+1] =

Et[ϕ1ΔSt + ϕ1ΔSt+1 + ϕ2ΔOt + ϕ2ΔOt+1 + vct]
(10) 

Et[(1 + β + βa2)wt − wt−1 − βwt+1]

= Et[(ϕ1 − β)(ΔSt + ΔSt+1) + (ϕ2 − β)(ΔOt + ΔOt+1) + vct]
(11) 

Take note that St − St−1 = ΔSt =
As+γ2Ot−1+est

γ1
  and Ot − Ot−1 = ΔOt =

Ao+eot

ω1
 . Let ks =

As/γ1, Γs = γ1/γ2, and ϵst = est/γ1. Furthermore, define ΔSt = ks + ΓsOt + ϵst, and ΔOt =

ko + ϵot . By forward iteration, ΔSt+1 = ks + ΓsOt+1 + ϵst+1  and Ot+1 = ko + ϵot+1 . As a 

result, ΔOt + ΔOt+1 = 2ko + ϵot + ϵot+1 . Let xst = 2ks + ϵst  and xot = 2ko + ϵot . Note 

that xst  and xot  are both stochastic. Recall that Etϵot+1 = Etϵst+1 = 0 . With these 

definitions, and some rearrangement, equation (11) can be rewritten as equation (12). 
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Et[(1 + β + βa2)wt − wt−1 − βwt+1]

= Et[(ϕ1 − β)(Γsko + Γsϵot + xst) + (ϕ2 − β)xot + vct]
(12) 

Let (ϕ1 − β)(Γsko) = h0 , (ϕ1 − β)(Γsxst) = h1t , and (ϕ2 − β)Xot + vct = h2t , where 

both h1t , and h2t  are accordingly stochastic. Finally, let h3t = h1t + h2t . These 

simplifications produce equation (13). 

Et[(1 + β + βa2)wt − wt−1 − βwt+1] = h0 + h3t (13) 

Following Hamilton (2002) and Sargent (2009), we use the lag operator, L, and some algebraic 

manipulation to rewrite equation (13) as Etβ [(1 −
1+β+βa2

β
L + β−1L2) wt+1] = −h0 − h3t. 

This equation can be factorized as a well-known difference equation described Hamilton (2002), 

and Sargent (2009). Equation (14) captures this difference equation and has real roots 0 <

λ1 < 1, λ2 = 1/(βλ1) > 1. 

(1 − λ1z)(1 − λ2z) = (1 −
1 + β + βa2

β
z + β−1z2) (14) 

Recalling that h3t is our white noise term, we can arrive at (15). 

wt = λ1wt−1 +
γ1h0

1 − λ2
−1 + λ1h3t (15) 

It’s worth highlighting that equation (15) is a stationary AR(1) process. Recalling that wt =

Ht + ϕ0 + ϕ1St + ϕ2Ot, we can add Ht−1 to both sides of equation (15), thus allowing it to 

be expressed as wt = ΔHt + (Ht−1 + ϕ0 + ϕ1St + ϕ2Ot). If we definewt−1 = Ht−1 + ϕ0 +

ϕ1St−1 + ϕ2Ot−1, then via substitution, and some rearrangement, we arrive at equation (16). 

ΔHt = λ1(Ht−1 + ϕ0 + ϕ1St−1 + ϕ2Ot−1) + (γ1h0)/(1 − λ2
−1) + λ1h3t − Ht−1 − ϕ0

−ϕ1(As + γ1St−1 + γ2Ot−1 + est) − ϕ2(Ao + ω1Ot−1 + eot)
(16) 

After collecting all terms common to Ht−1, Ot−1, and St−1, we can rearrange equation (16) 

as equation (17). 

ΔHt = (λ1 − 1)Ht−1 + (λ1ϕ1 − ϕ1γ1)St−1 + (λ1ϕ2 − ϕ1γ2 − ϕ2ω1)Ot−1

+(γ1h0)/(1 − λ2
−1) + λ1h3t + λ1ϕ0 − ϕ0 − ϕ1As − ϕ1est − ϕ2Ao − ϕ2eot

(17) 

Finally, we can collect all constant, and stochastic terms to produce our reduced form equation, 

described by (18). 

ΔHt = B0 + B1Ht−1 + B2St−1 + B3Ot−1 + εt (18) 

Where B1 = (λ1 − 1) , B2 = (λ1ϕ1 − ϕ1γ1) , and B3 = (λ1ϕ2 − ϕ1γ2 − ϕ2ω1) . Our 

constant is defined as B0 = (γ1h0)/(1 − λ2
−1) + λ1ϕ0 − ϕ0 − ϕ1As − ϕ2Ao , and our 

stochastic term is defined as εt = λ1h3t − ϕ1est − ϕ2eot. 
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3. Empirical Evidence 

Our orders-augmented LQ model in a reduced form setting can be estimated as a single 

equation model via equation (18), or as a system of equations using equations using (18), (4), 

and (5) in combination with our cointegrating equation, wt = Ht + ϕ0 + ϕ1St + ϕ2Ot. We 

present single and simultaneous equation estimation results for total manufacturing and 

compare them with baseline estimations using the traditional solution to the LQ model. Our 

main results show that the inclusion of orders into the solution for optimal inventory investment 

changes both the sign and significance of the lagged sales coefficient from positive to negative 

for the total manufacturing sector. 

Furthermore, results from a system-wise estimation procedure for total manufacturing uncover 

that orders adjust faster and at a level of higher significance than sales or inventories to restore 

equilibrium, thus adding a new finding the pervasive adjustment speed puzzle in the literature. 

Finally, cointegration tests show significantly stronger evidence of one cointegration 

relationship in a trivariate system versus a bivariate equation system. 

3.1 Data 

Our data source is the M3 Manufacturing Survey published by the US Census Bureau. All data 

are in monthly buckets ranging from March 1992 through August 2022 and deflated using the 

CPI index.(Note 6) Our data is specific to total manufacturing. All data are in terms of millions 

of US dollars. Figure 2 provides visual evidence of the data. 

 

Figure 2. M3 Manufacturing Data: Total Manufacturing 

 

A key insight from Figure 2 is that while orders and sales tend to comove with very close 

correspondence, they are seldom identical. This statistical observation wherein expected 

demand fails to equate with realized demand reaffirms our motivation and the inclusion of 𝑂𝑡 

in equations (4), and (5). Other key descriptive statistics relating to inventory, sales, orders, 

and production (where production is 𝑄𝑡 = 𝑆𝑡 + Δ𝐻𝑡), including correlation, are described in 

Table 1 below. 
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Table 1. Descriptive Statistics 

Statistic 𝐻𝑡 𝑆𝑡 𝑂𝑡 𝑄𝑡 Δ𝐻𝑡 Δ𝑆𝑡 Δ𝑂𝑡 Δ𝑄𝑡 

Mean (μ) 1,108,690 816,663.2 808,624.5 852,749.5 -2,343.074 -1,272.532 -1,205.192 -1,440.673 

Std. Dev. (σ) 235,576 158,066.9 155,918.4 168,667.5 6,788.181 11,936.18 20,077.14 15,014.59 

Minimum 786,052 471,732.2 452,792.5 520,587.9 -27,003.24 -72,946.25 -98,307.4 -62,151.34 

Maximum 1,634,245 1,060,463 1,067,265 1,143,247 23,962.15 47,510.7 88,991.63 47,432.57 

𝑐𝑜𝑟(𝐻𝑡) 1 -- -- -- -0.14 0.02 0.01 0.03 

𝑐𝑜𝑟(𝑆𝑡) 0.93 1 -- -- -0.06 0.07 0.04 0.10 

𝑐𝑜𝑟(𝑂𝑡) 0.91 0.99 1 -- -0.04 0.09 0.09 0.13 

𝑐𝑜𝑟(𝑄𝑡) 0.93 0.96 0.95 1 -0.17 0.00 -0.01 0.05 

𝑐𝑜𝑟(Δ𝐻𝑡) -0.14 0.02 0.01 0.03 1 -- -- -- 

𝑐𝑜𝑟(Δ𝑆𝑡) -0.06 0.07 0.04 0.10 0.02 1 -- -- 

𝑐𝑜𝑟(Δ𝑂𝑡) -0.04 0.09 0.09 0.13 0.04 0.66 1 -- 

𝑐𝑜𝑟(Δ𝑄𝑡) -0.17 0.00 -0.01 0.05 0.49 0.76 0.53 1 

 

Beyond Table 1, it’s also worth reporting and discussing the average inventory-to-sales 

(shipments) ratio, and the volatility of orders relative to shipments. Over our full sample, we 

report a mean inventories-to-sales ratio, 𝐻𝑡/𝑆𝑡, of 1.36. This number is surprisingly high in an 

era of vendor-managed inventories, and just-in-time (JIT) inventory practices. In a sense, a 

high inventory-to-sales ratio in this instance illustrates that firms are still bearing considerable 

costs of “hoarding” inventories, which can in-part be attributable to the need to buffer supply 

chain disruptions, and unexpected demand distortions.(Note 7) 

As for the relative volatility of orders relative to shipments, 𝑣𝑎𝑟(𝑂𝑡)/𝑣𝑎𝑟(𝑆𝑡), we report a 

variance ratio of 0.97. This variance ratio is known as the Bullwhip Effect, or demand 

amplification. Interestingly, a Bullwhip Effect < 1  suggests there is little demand 

amplification at play in the manufacturing sector, despite the inventory-to-sales ratio being >

1. This result tells us that over most of our sample, firms are relatively successful at smoothing 

production volatility relative to demand volatility but are engaging in inventory hoarding or 

using inventories as a buffer to shocks as though they were not smoothing production.  

3.2 Single-Equation Results 

From equation (18), we have an estimable expression for optimal inventory growth based on 

the firm’s optimization procedure described in our setup. We compare estimation results of 

equation (18) to a model without orders, which would be the conventional solution to this 

model described by Holt (1960), and expanded upon by Hamilton (2002), Herrera (2018), and 

Ramey & West (1999) among others. Table 2 illustrates these results. 

We note significant statistical differences between both reduced form models. Firstly, both 𝐵0 

and lagged inventories, 𝐻𝑡−1 , are statistically zero in our new model, but carry marginal 

statistical significance in the baseline model. Lagged sales, 𝑆𝑡−1, is statistically significant in 

both models, but differently signed. The interpretation from the baseline model is that a one-

unit change in lagged sales causes inventories to grow by 0.03 or $30,000. In our updated 
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model, a unit change in 𝑆𝑡−1  causes Δ𝐻𝑡  to fall by 0.05 or $50,000. Furthermore, a unit 

increase in lagged orders, 𝑂𝑡−1, causes Δ𝐻𝑡 to increase by 0.08 or $80,000. 

 

Table 2. Single Equation Models 

Dependent Variable: Δ𝐻𝑡 

Coefficient Equation (18) Baseline Equation 

𝐵0 -5819.73 (4121.89) -10616.62** (4000.11) 

𝐵1 -0.01 (0.00) -0.01* (0.00) 

𝐵2 -0.05** (0.02) 0.03*** (0.01) 

𝐵3 0.08*** (0.02)   

𝑁 362 362 

Adj. 𝑅2 0.13 0.09 

Note: ∗∗∗ 𝑝 < 0.001;∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; . 𝑝 < 0.10 

 

Quite simply, the omission of orders significantly biases the coefficient for sales. One 

explanation for this stem directly from the idiosyncrasies of the manufacturing sector. To 

reiterate aspects of Blinder & Maccini (1991), most inventories lie in the manufacturing sector, 

wherein orders are generated well in advance of goods fulfillment compared to the retail sector, 

thus the timing of demand signal generation and production relative to fulfillment allows for 

inventory investment to arise via a mismatch between anticipated and actual demand.  

3.3 Simultaneous-Equation Results 

We estimate a VECM to observe changes in adjustment speeds between a bivariate system 

without orders and a trivariate VECM with orders. We first must test for cointegration. We 

apply the methodology from Johansen (1995) to identify the presence of cointegration across 

our trivariate system, Zt = [Ht, St, Ot]𝑇. These results are reported in Table 3. 

 

Table 3. Cointegration Test Results 

Hypothesis Trace Statistic 10% Crit. Val. 5% Crit. Val. 1% Crit. Val. 

𝑟 = 0 42.81** 32.00 34.91 41.07 

𝑟 ≤ 1 20.55* 17.85 19.96 24.60 

𝑟 ≤ 2 2.50 7.52 9.24 12.97 

Note: ∗∗∗ 𝑝 < 0.001;∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; . 𝑝 < 0.10 

 

Consistent with our model's structural assumptions, there is evidence of, at most, one 

cointegrating relationship. To proceed further, we must also discern if our data is 𝐼(1). We 

formally test for this using Augmented Dickey-Fuller (ADF) tests. These results are reported 

in Table 4. 
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Table 4. ADF Test Results 

Variable T. Statistic P-Value 

𝐻𝑡 -2.9551 0.1738 

𝑆𝑡 -3.2773 0.07507. 

𝑂𝑡 -3.515 0.0414* 

Δ𝐻𝑡 -4.479 ≤0.001*** 

Δ𝑆𝑡 -5.618 ≤0.001*** 

Δ𝑂𝑡 -5.9361 ≤0.001*** 

Note: ∗∗∗ 𝑝 < 0.001;∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; . 𝑝 < 0.10 

 

We observe that there's weak evidence of a unit root in 𝑆𝑡 and 𝑂𝑡. However, there is strong 

rejection of the presence of a unit root when we difference our data, thus it is more suggestive 

that our data is 𝐼(1), rather than 𝐼(0). We proceed to estimate a VECM described by equation 

(19). 

Δ𝑍𝑡 = 𝐴0 + Π𝑍𝑡−1 + ∑ Ω𝑖Δ𝑍𝑡−𝑖

6

𝑖=1

+ η𝑡 (19) 

The results are reported in Table 5. 

We observe that inventories exhibit high persistence across all three equations in our system, 

as expected. Shipments are only persistent in the orders equation and are of weak significance 

in the inventories equation. Finally, orders are movements between both the sales equation and 

its own equation. 

Inventories exhibit an adjustment speed that is statistically zero; however, both shipments and 

orders adjust slowly at a high level of statistical significance. It seems that across all lags, 

inventories lead orders more so, but orders lead sales persistently across all six lags. On the 

other hand, sales seem to drive some significant and persistent effects across both orders and 

inventories. 

More interestingly, in a single equation setting, the level of orders leads inventory investment, 

but in a VECM setting, inventory growth leads order growth. Moreover, it is orders that adjust 

to restore equilibrium in the VECM setting despite not leading inventory growth. Finally, it's 

worth noting that orders load consistently, and positively on shipments, but at relatively low 

levels (akin to a moving average function). These results at first glance imply that forecasters 

and firms ought to give more credence to shipments, rather than orders for the sake of 

forecasting inventory investment positions, and demand. 
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Table 5. VECM Results 

VECM Equations 

Coefficient Δ𝐻𝑡 Δ𝑆𝑡 Δ𝑂𝑡 

𝐸𝐶𝑇𝑡−1 -0.0010 (0.0014) -0.0075* (0.0037) -0.0243*** (0.0059) 

Δ𝐻𝑡−1 0.1632** (0.0544) 0.6513*** (0.1466) 0.6314** (0.2290) 

Δ𝐻𝑡−2 0.1427* (0.0563) 0.1761 (0.1517) 0.3316 (0.2370) 

Δ𝐻𝑡−3 0.1505** (0.0567) 0.0498 (0.1526) 0.0257 (0.2384) 

Δ𝐻𝑡−4 0.0530 (0.0557) -0.4957** (0.1500) -0.5522* (0.2343) 

Δ𝐻𝑡−5 0.0688 (0.0553) 0.0323 (0.1488) 0.1751 (0.2324) 

Δ𝐻𝑡−6 0.0545 (0.0541) 0.0814 (0.1457) 0.1379 (0.2276) 

Δ𝑆𝑡−1 0.0609. (0.0320) -0.0785 (0.0861) 0.6204*** (0.1346) 

Δ𝑆𝑡−2 0.0270 (0.0341) -0.2764** (0.0918) 0.3425* (0.1434) 

Δ𝑆𝑡−3 0.1208*** (0.0360) 0.0070 (0.0968) 0.4527** (0.1512) 

Δ𝑆𝑡−4 0.0785* (0.0357) -0.3387*** (0.0962) -0.0893 (0.1503) 

Δ𝑆𝑡−5 0.0693* (0.0337) -0.1362 (0.0906) 0.1576 (0.1416) 

Δ𝑆𝑡−6 0.0234 (0.0288) -0.1260 (0.0777) -0.1820 (0.1213) 

Δ𝑂𝑡−1 -0.0053 (0.0223) 0.1634** (0.0601) -0.4554*** (0.0939) 

Δ𝑂𝑡−2 0.0135 (0.0251) 0.1596* (0.0676) -0.3400** (0.1057) 

Δ𝑂𝑡−3 -0.0325 (0.0264) 0.1714* (0.0710) -0.1437 (0.1109) 

Δ𝑂𝑡−4 -0.0159 (0.0260) 0.1510* (0.0700) -0.0743 (0.1094) 

Δ𝑂𝑡−5 -0.0175 (0.0235) 0.1944** (0.0634) 0.0361 (0.0990) 

Δ𝑂𝑡−6 -0.0051 (0.0188) 0.1294* (0.0507) 0.1011 (0.0792) 

N 357 357 357 

Adj. 𝑅2 0.4516 0.1506 0.234 

Note: ∗∗∗ 𝑝 < 0.001;∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; . 𝑝 < 0.10 

 

3.4 Impulse-Response Functions 

A convenient feature of VECM models is that they can be readily converted to a cointegrated 

VAR (CVAR) in levels (Lütkepohl, 2005; Kilian & Lütkepohl, 2017; Hamilton, 2020). Through 

this, it is possible to have general impulse-response functions in levels to evaluate how unit 

shocks from our three core variables of interest respond to one another. While there is some 

persistence of orders in the inventories equation described in Table 5, it is possible such a 

relationship may be nothing more than spurious (and even so, its persistence is at a level that 

is statistically insignificant). Figure 3 provides standard responses to unit shocks within our 

trivariate VECM system. 
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Figure 3. CVAR Impulse-Response Functions 

 

Theoretically it is sensible to understand why inventories do not respond strongly to order 

shocks (as echoed in Table 5): the firm should be incentivized to build-to expected orders, 

therefore if firms have an unbiased model of shipments conditional on orders, their impact on 

inventories should be neutral at most. In contrast, however, unexpected shipments could signal 

sales volatility, and provide reason to hold higher levels of inventories (as the LQ model would 

predict). Inventory growth leading order growth Table 5 is more likely spurious given the 

results present in Figure 3, but nevertheless provides some utility for the prospected and 

interested forecaster. 

3.5 Forecast Error Variance Decomposition 

A final exercise of benefit to forecasters, and practitioners is that of a forecast error variance 

decomposition (FEVD). An FEVD can provide some insights on the volatility of forecasts 

associated with our variables of interest. These results for a forecast horizon of 𝑡 = 1 … 𝑡 = 9 



 Research in Applied Economics 

ISSN 1948-5433 

2023, Vol. 15, No. 2 

                                                  http://rae.macrothink.org 25 

periods (3 quarters) are described below in Table 6. 

 

Table 6. FEVD Results 

 Inventories (𝐻𝑡) Shipments (𝑆𝑡) Orders (𝑂𝑡) 

Horizon 𝐻𝑡 𝑆𝑡 𝑂𝑡 𝐻𝑡 𝑆𝑡 𝑂𝑡 𝐻𝑡 𝑆𝑡 𝑂𝑡 

𝑡 + 1 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.56 0.44 

𝑡 + 2 0.99 0.01 0.00 0.01 0.98 0.00 0.01 0.71 0.28 

𝑡 + 3 0.98 0.02 0.00 0.03 0.96 0.01 0.03 0.76 0.21 

𝑡 + 4 0.94 0.06 0.00 0.04 0.95 0.01 0.03 0.80 0.16 

𝑡 + 5 0.90 0.10 0.00 0.04 0.95 0.01 0.04 0.83 0.14 

𝑡 + 6 0.85 0.15 0.00 0.04 0.95 0.01 0.04 0.84 0.12 

𝑡 + 7 0.82 0.18 0.00 0.04 0.95 0.01 0.04 0.86 0.11 

𝑡 + 8 0.79 0.21 0.00 0.04 0.95 0.01 0.04 0.87 0.09 

𝑡 + 9 0.73 0.24 0.00 0.04 0.95 0.01 0.04 0.88 0.08 

 

As we can see, the level of inventories explains most of its own forecast volatility, however, in 

later forecast horizons, sales can explain almost 25% of variation in inventory levels. This is 

consistent with the high persistence of inventories, as noted in Ramey & West (1999). Similarly, 

variation in shipments forecasts over long horizons are mostly explained by their own time 

series dynamics.  

For orders, we see its variation is well-explained by its own dynamics, but best explained by 

variation in shipments, accounting for almost 90% of its variation in later forecast periods. This 

reinforces the importance of sales or shipments and its predictive content for inventories over 

orders. However, if orders are a valid proxy for expected demand, and forecasters are interested 

in forecasting such expectations, it is reliable, and advisable to use a combination of past 

demand expectations (orders), and shipments to do so.  

 

4. Discussion 

For total manufacturing, our results show that orders adjust at a rate that is both stronger and 

significant when compared to adjustment speeds for inventories and sales. This implies that 

deviations from the long-run in expected demand tend to revert to back to steady-state more 

meaningfully than realized demand. 

The asymmetries in the adjustment rates between expected and realized demand can result in 

inventory accumulation. In a sense, the inclusion of orders in our model helps explain the slow 

adjustment puzzle of inventories by disentangling expected demand from realized sales. While 

we posit that our variation on the LQ model is superior to the baseline, traditional model, we 

can also test improvements in the goodness-of-fit between both single-equation models using 

a standard ANOVA test comparing our baseline equation and equation (18). Table 7 shows 

the results of this exercise. 
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Table 7. ANOVA Test Results 

Model Res. DF RSS DF SSR F-Stat P-Value 

Equation (18) 359 5030401936 -- -- -- -- 

Baseline Eq. 358 4833039644 1 197362292 14.619 0.00*** 

Note: ∗∗∗ 𝑝 < 0.001;∗∗ 𝑝 < 0.01; ∗ 𝑝 < 0.05; . 𝑝 < 0.10 

 

As we can see, there is a strong and statistically significant improvement in the fit of our 

reduced form LQ model compared to the existing baseline, reinforcing our proposition that 

orders do well to better explain the long-run relationships between inventories and sales 

implied by the LQ model, and are an integral component of the underlying data generating 

process for sales, despite orders lackluster predictive content. 

Linking these findings to the literature, it becomes clear that this work contributes towards 

addressing several puzzles pervasive in the literature. As noted in the Maccini et al. (2009), two 

of the most prevalent puzzles in the inventories literature are the variance ratio puzzle, and the 

slow adjustment puzzle. The variance ratio puzzle states that despite firms operating under 

convex costs to smooth production, production volatility should be less than sales volatility, 

however, the data does not bear this outcome—as noted in Table 1, the volatility of 𝑄𝑡 is still 

larger than 𝑆𝑡. The slow adjustment puzzle states that the estimated stock-adjustment speeds 

of inventories are exceedingly slow relative to how wide inventory swings can be day-to-day 

for most manufacturers.  

We offer some possible explanations within the context of our results. When evaluating 

potential sources of the variance puzzle, we offer the possibility that the Bullwhip Effect or 

demand amplification (𝑣𝑎𝑟(𝑂𝑡)/𝑣𝑎𝑟(𝑆𝑡)) can explain this. One possible reason production 

volatility likely exceeds sales volatility is that new orders generated from downstream firms 

signal higher levels of production than reflected in actual demand for upstream manufacturers.  

Lee et al. (1997) offers several compelling explanations for this phenomenon, including: long 

lead times, competing forecasts, order batching costs, correlated ordering, price volatility, and 

shortage gaming. Future research would do well to focus on tying the key contributions from 

the operations research, and management science fields to economics to further expound on 

this specific puzzle.  

Regarding adjustment speeds, it is possible that in instances of disequilibrium, inventories are 

not adjusting, rather orders (expected demand) are. In essence, early demand signals generated 

by new orders prompt stock adjustment indirectly, however, should actual shipments or sales 

be incongruent with orders, inventories will be created incidentally.  

In other words, orders signal expected demand, wherein unsold finished goods (inventories) 

are generated when there is a positive difference between expected demand and realized 

demand (𝑂𝑡 − 𝑆𝑡 > 0 ). This is just one plausible explanation; however, verification of this 

conjecture would require a more rigorous structural model beyond the scope of this work.  
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5. Concluding Remarks 

We augment the existing LQ model with orders and find that the inclusion of orders has a 

significant impact in a reduced form setting. We find that the omission of orders biases the sign 

of the sales coefficient. Furthermore, we find asymmetry in the adjustment speeds between 

sales and orders in a conventional VECM setting. These results suggest that expected demand 

adjusts at a rate statistically stronger and faster than realized demand. This finding implies that 

part of the inventory adjustment speed puzzle can be explained by incongruence between 

expected and realized demand. When comparing the goodness-of-fit of our single-equation 

inventory investment equations, we find that there is a strong and statistically significant 

improvement in the fit our model with orders compared to the traditional solution without 

orders. 

We stress that the LQ model is a parsimonious partial equilibrium representation of the 

representative firm's inventory investment decision; however, it is not without criticism and 

drawbacks. Of note, its fit compared to the underlying data generating process (DGP) is not 

particularly compelling. Furthermore, as with any structural model, its structural identification 

informs its reduced form identification, thus, the representative firm's choice of inventory 

investment is guided by our setup described by equations (1) through (5). 

Works like West & Wilcox (1994), and Hamilton (2002) also do well to point out the limitations 

of the LQ model, in particular its weak global fit, and assumptions of cointegration between 

inventories, and sales, of which evidence is mixed within the literature. These critiques 

notwithstanding, the LQ model still serves as the backbone of the inventories literature and has 

been used as the starting point for studies outside of inventories such as the case of oil shocks 

to production in Herrera (2018). 

Inventories and their relationship to the business cycle and its volatility, particularly 

considering growing woes in global supply chains, is still of interest to practitioners and 

policymakers alike and has motivated more recent pieces such as Gortz & Gunn (2018), Gortz 

et al (2022), Camacho et al. (2011), Crouzet & Oh (2016), Jones & Tuzel (2013) and Boileau 

& Letendre (2011). As interest in inventories continues to rebound from its once mature state, 

the field must be diligent in ensuring the assumptions of the structural equations that the 

literature is built upon are also updated and considerate of new information available to 

practitioners and researchers alike. 

We argue that this paper serves as one such Pareto improvement to the benchmark LQ model 

by allowing for expected demand and realized demand to be disentangled from one another 

with minimal deviation from the setup of the original model described by Holt (1960) and 

Ramey & West (1999). These efforts provide new evidence towards solving the pervasive 

variance ratio and adjustment speed puzzles present in the literature.  

While more structurally complex models such as Ramey (1989) and Humphreys et al. (2001) 

exist, their foundations are, too, informed by the LQ model, thus, it is critical for future research 

to consider updates to more complex general equilibrium models by distinguishing between 

expected and realized demand explicitly. Finally, applied researchers utilizing the LQ would 



 Research in Applied Economics 

ISSN 1948-5433 

2023, Vol. 15, No. 2 

                                                  http://rae.macrothink.org 28 

be misguided by its original and albeit dated solution given the bias associated with the 

shipments term, in particular. 
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Notes 

Note 1. This is calculated as the average of the Bureau of Economic Analysis (BEA) time series 

“INVCMRMT” (real manufacturing and trade inventories) divided by “GDPC1” (real GDP). 

Note 2. This is the “baseline” solution to the LQ model. 

Note 3. Throughout this paper, we will use “sales” and “shipments” interchangeably. 

Note 4. This is driven by the well-known correlation between inventories and lagged output as 

well as the correlation between inventories and firm sales (around 90.4% in the data utilized in 

this study). 

Note 5. Other pieces looking at the implications of the Bullwhip Effect in terms of profitability 

and forecast precision are explored in Metters (1997), and Bray & Mendelson (2013), among 

others. 

Note 6. This is done to interpret our data in real terms, or in quantities, rather than nominal 

terms. 

Note 7. See Jiang et al. (2021) for more details on this phenomenon. 
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