Effect of Disinfectants on Antibiotics Susceptibility of Pseudomonas aeruginosa

Majid H. Al-Jailawi, Rasha S. Ameen, Montaha R. Al-Jeboori

Abstract


Disinfectants are widely used to get rid of microorganisms whether in hospitals, health centers or for normal domestic use. Some suggested that when disinfectants are incorrectly diluted the disinfectant might promote the growth of antibiotic-resistant bacteria, therefore, in this study pathogenic bacterium (Pseudomonas aeruginosa), isolated from patient with urinary tract infection, treated with two locally popular disinfectants (Claradone and Sarttol). Results showed that the bacterial growth was affected by both disinfectants. The lowest concentration of Claradone that inhibit the growth of this bacterium is considered as the minimum inhibitory concentration (MIC), this was 30%, while the lowest effecting concentration of Sarttol was 3%. A number of survival colonies after treated with high concentration of Calarodone and Sarttol were investigated for their susceptibility to antibiotics, using standard disc diffusion method. Results indicated that these colonies of P. aeruginosa resisted antibiotics they were sensitive to before treatment. So it can be concluded that using Claradone and sarttol can make the pathogenic bacterium (P. aeruginosa) resist some antibiotics.


Full Text:

PDF

References


Aboh, M. I., Oladosu, P., & Ibrahim, K. (2013). Antimicrobial Activities of Some Brands of Household Disinfectants Marketed In Abuja Municipal Area Council, Federal Capital Territory, Nigeria. American Journal of Research Communication, 1-12.

Atlas, R. M., Parks, L. C., & Brown, A. E. (1995). Laboratory manual of experimental microbiology, mosby-year book, Inc, USA.

Aversion, M. B., Bennett, P. M., & Walsh, T. R. (2000). Beta-lactamases expression in: P. aeruginosa J. Antimicrobiol. Chemotherapy., 45, 877-880.

Christopher. J. I., Geoff, W. H., & Stephen, P. D. (2007). Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus aureus. Antimicrob. Agents Chemother, 51(1), 296-306. http://dx.doi.org/10.1128/AAC.00375-06

CLSI. (2006). Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement, M100-S16; Clinical and Laboratory Standards Institute: Wayne, PA, USA. 26 (1), 183.

David, M., & Moore, D. V. M. (1997). Reference Paper: Pseudomonas and the Laboratory Animal. CRL 10(4).

de Bentzmann, S., & Plesiat, P. (2011). The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol, 13(7), 1655-65. http://dx.doi.org/10.1111/j.1462-2920.2011.02469.x

Denyer, S. P., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41(3-4), 261-268. http://dx.doi.org/10.1016/S0964-8305(98)00023-7

Dorr, T., Lewis, K., & Vulic, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5(12), e1000760. http://dx.doi.org/10.1371/journal.pgen.1000760

Gilbert, P., Das, J. R., Jones, M. V., & Allison, D. G. (2001). Assessment of resistance towards biocides following the attachment of microorganisms to, and growth on, surfaces. J. Appl Microbiol, 91(2), 248-54. http://dx.doi.org/10.1046/j.1365-2672.2001.01385.x

Gilbert, P., McBain, A. J., & Rickard, A. H. (2003). Formation of microbial biofilm in hygienic situations: a problem of control. Int Biodeterior Biodegradation, 51(4), 245-48. http://dx.doi.org/10.1016/S0964-8305(03)00043-X

Higgins, C, S., Murtough, S. M., Hiom, S. J., Payne, D. J., Russell, A. D., & Walsh, T. R. (2001). Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect Dis., 7, 308-315. http://dx.doi.org/10.1046/j.1198-743x.2001.00253.x

Hill, K. E., Malic, S., Mckee, R., Rennison, T., Harding, K. G., Williams, D. W., & Thomas, D. W. (2010). An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother, 65(6), 1195-206. http://dx.doi.org/10.1093/jac/dkq105

Iroha, I. R., Oji, A. E., Nwosu, O. K., & amadi, E. S. (2011). Antimicrobial activity of savlon, izal and 2-germicide against clinical isolate of P. aeruginosa from hospital wards. European J. of Dentistry and Midicin, 3(1), 32-35. http://dx.doi.org/10.3923/ejdm.2011.32.35

Kim, Y. M., Farrah, S., & Baney, R. H. (2007). Structure-antimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols. Int. J. Antimicrob. Ag., 29, 217-222.

Kroll, R. G., & Patchett, R. A. (1991). Biocide-induced perturbations of cell homeostasis: intracellular pH, membrane potential and solute transport. Soc. Appl. Bacterial. Tech. Ser., 27, 189- 202. http://dx.doi.org/10.1016/j.ijantimicag.2006.08.036

Kuyyakanond, T., & Quesnel, L. B. (1992). The mechanism of action of chlorhexidine. FEMS microbial. Lett., 100, 211- 216. http://dx.doi.org/10.1111/j.1574-6968.1992.tb05705.x

Machado, I., Graça, J., Lopes, H., Lopes, S., & Pereira, M. O. (2013) antimicrobial Pressure of ciprofloxacin and Gentamicin on biofilm development by an endoscope-Isolated Pseudomonas aeruginosa. ISRN Biotechnology, 10.

Mc Cay, P. H., Ocampo-Sosa, A. A., & Fleming, G. T. A. (2010). Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous Culture. Microbiology, 156, 30-38. http://dx.doi.org/10.1099/mic.0.029751-0

McDonnell, G., & Russell, A. D. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev., 12(1), 147-179.

Odjadjare, E. E., Igbinosa, E. O., Mordi, R., Igere, B., Igeleke, C. L., & Okoh, A. I. (2012). Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa. Int. J. Environ. Res. Public Health., 9, 2092-2107. http://dx.doi.org/10.3390/ijerph9062092

Olukemi, O. A., & Funmilayo, O. A. (2011). The efficacy of the commonly used hospital disinfectants on Pseudomonas aeruginosa. International Research Journal of Microbiology, 2(7), 226-229.

Onaolapo, J. A. (2001). Effects of sub- recommended dilutions of SavlonR on the pathogenicity of P. aeruginosa. J.P.T., 6(2), 116.

Poole, K. (2002). Mechanism of bacterial biocide and antibiotic resistance. J Appl Microbiol Symp 92 (Suppl.), 55S-64S. http://dx.doi.org/10.1046/j.1365-2672.92.5s1.8.x

Robicsek, A., Jacoby, G. A., & Hooper, D. C. (2006). The worldwide emergence of plasmid-mediated quinolone resistance. Lancet. Infect. Dis, 6, 629-640. http://dx.doi.org/10.1016/S1473-3099(06)70599-0

Russel, A. D., & Russel, N. J. (1995). Biocides: activity, action and resistance. Symp Soc Gen Microbiol., 53, 327-365.

Russell, A. D. (1995). Activity of biocides against mycobacterium. J. Appl. Bacterial, Symp. Suppl., 81, 87-101. http://dx.doi.org/10.1111/j.1365-2672.1996.tb04602.x

Russell, A. D. (1999). Bacterial resistance to disinfectants: present knowledge and future problems. J. of Hospital infection., 43, 57-68. http://dx.doi.org/10.1016/S0195-6701(99)90066-X

Russell, A. D. (2003). Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis, 3(12), 794-803. http://dx.doi.org/10.1016/S1473-3099(03)00833-8

Russell, A. D., & Chopra, I. (1996). Understanding antibacterial action and resistance (Ellis Horwood, Chichester, England), 2nd ed.

Rutala, W. A., & Weber, D. J. (2001). Surface disinfection: should we do it? J. Hosp. Infect., 48, 864-868. http://dx.doi.org/10.1016/S0195-6701(01)90017-9

Stock, I., & Wiedmann, B. (2001). Natural antimicrobial susceptibilities of P. shigelliodes strains. J. Antimicrob. Chemother, 48, 803-811. http://dx.doi.org/10.1093/jac/48.6.803

Turnidge, J. D., Ferraro, M. J., & Jorgen, J. H. (2003). Susceptibility test methods: General considerations. Manual of Clinical. Microbiol., 8, 219-223.

Zavascki, A. P., Cruz, R. P., & Goldani, L. Z. (2005). Risk factors for imipenem resistant Pseudomonas aeruginosa; a comparative analysis of two case-control studies in hospitalized patients. J. Hosp. Infect., 59, 96- 101. http://dx.doi.org/10.1016/j.jhin.2004.09.007




DOI: http://dx.doi.org/10.5296/jab.v1i1.4038

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Copyright © Macrothink Institute   ISSN 2327-0640