Raw Glycerol as an Alternative Carbon Source for Cultivation of Exopolysaccharide-Producing Bacteria

Renata Aguirre Trindade, Adriel Penha Munhoz, Carlos André Veiga Burkert

Abstract


The large-scale use of biodiesel has shown significant environmental benefits as regards the reduction of global warming impacts. The increased generation of glycerol, the main byproduct of the reaction, makes necessary to propose alternatives to its use. In this context, the aim of this study was to evaluate raw glycerol (RG), a byproduct from biodiesel synthesis, as a carbon source for the cultivation of bacteria recognized as exopolysaccharides (EPSs) producers, compared with sucrose (S) and with a mixture of both components in a ratio of 1:1 w:w (SRG). The bacteria used were: Xanthomonas campestris pv. mangiferaeindicae IBSBF 1230, Pseudomonas oleovorans NRRL B-14683, Sphingomonas capsulata NRRL B-4261 and Zymomonas mobilis NRRL B-4286. All bacteria were capable of growing and producing EPSs using RG as the sole carbon source. For X. campestris, EPSs concentration of around 4.00 g L-1 was found for the different carbon sources tested. For P. oleovorans, only the medium composed by S (0.85 g L-1) differed from the other media, with better results being found using RG and SRG. S. capsulata showed higher concentration in the medium containing S and SRG, around 3.40 g L-1, and in the medium containing RG this value decreased to 1.70 g L-1. Z. mobilis, on the other hand, showed a better result using SRG (1.41 g L-1), and in the medium containing S and RG, these values were lower, reaching 0.27 and 0.77 g L-1, respectively.


Full Text:

PDF

References


Amaral, P.F.F., Ferreira, T.F., Fontes, G.C., & Coelho, M.A.Z. (2009). Glycerol valorization: new biotechnological routes. Food and Bioproducts Processing, 87, 179-186. http://dx.doi.org/10.1016/j.fbp.2009.03.008

Bajaj, I.B., Saudagar, P.S., Singhal, R.S., & Pandey, A. (2006). Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. Journal of Bioscience and Bioengineering, 102, 150-156. http://dx.doi.org/10.1263/jbb.102.150

Banik, R.M., Santhiagu, A., & Upadhyay, S.N. (2007). Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresource Technology, 98, 792-797. http://dx.doi.org/10.1016/j.biortech.2006.03.012

Berwanger, A.L.S., Domingues, N.M., Vanzo, L.T., Di Luccio, M., Treichel, H., Padilha, F.F., & Scamparini, A.R.P. (2006). Production and rheological characterization of biopolymer of Sphingomonas capsulata ATCC 14666 using conventional and industrial media. Applied Biochemistry and Biotechnology, 129-132, 942-950.

Coleman, R.J., Patel, Y.N., & Harding, N.E. (2008). Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. Journal of Industrial Microbiology & Biotechnology, 35, 263-274. http://dx.doi.org/10.1007/s10295-008-0303-3

Ernandes, F.M.P.G., & Cruz, C.H.G. (2011). Uso de caldo de cana-de-açúcar para produção de levana por Zymomonas mobilis CCT4494. Ciência e Agrotecnologia, 35, 354-360. http://dx.doi.org/10.1590/S1413-70542011000200017

European Biodiesel Board - EBB. (2014). Available: http://www.ebb-eu.org/biodiesel.php (November 04, 2014).

Freitas, F., Alves, V.D., Pais, J., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M.A.M. (2010). Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochemistry, 45, 297-305.

http://dx.doi.org/10.1016/j.procbio.2009.09.020

Freitas, F., Alves, V.D., & Reis, M.A.M. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 29, 388-398. http://dx.doi.org/10.1016/j.tibtech.2011.03.008

Kawai, L.A., Pinotti, M.H.P., & Celigoi, M.A.P.C. (2006). Produção de exopolissacarídeos pela cianobactéria Nostoc sp em diferentes concentrações de nitrogênio e glicose. Semina: Ciências Biológicas e da Saúde, 27, 33-39. http://dx.doi.org/10.5433/1679-0367.2006v27n1p33

Hilliou, L., Freitas, F., Oliveira, R., Reis, M.A.M., Lespineux, D., Grandfils, C., & Alves, V.D. (2009). Solution properties of an exopolysaccharide from a Pseudomonas strain obtained using glycerol as sole carbon source. Carbohydrate Polymers, 78, 526-532. http://dx.doi.org/10.1016/j.carbpol.2009.05.011

Luvielmo, M.M., & Scamparini, A.R.P. (2009). Goma xantana: produção, recuperação, propriedades e aplicação. Estudos Tecnológicos, 5, 50–67. http://dx.doi.org/10.4013/ete.2009.51.04

Maziero, R., Cavazzoni, V., & Bononi, V.L.R. (1999). Screening Basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Revista de Microbiologia, 30, 77-84. http://dx.doi.org/10.1590/S0001-37141999000100015

Mesomo, M., Silva, M.F., Boni, G., Padilha, F.F., Mazutti, M., Mossi, A., Oliveira, D., Cansian, R.L., Di Luccio, M., & Treichel, H. (2009). Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimisation and rheological characterisation. Journal of the Science of Food and Agriculture, 89, 2440-2445. http://dx.doi.org/10.1002/jsfa.3743

Montgomery, D.C. (2004). Introdução ao controle estatístico de qualidade (4th ed.). Rio de Janeiro: Editora LTC.

Moreira, A.S., Vendruscolo, J.L.S., Gil-Turnes, C., & Vendruscolo, C.T. (2001). Screening among 18 novel strains of Xanthomonas campestris pv pruni. Food Hydrocolloids, 15, 469-474. http://dx.doi.org/10.1016/S0268-005X(01)00092-3

Mota, C.J.A., Silva, C.X.A., & Gonçalves, V.L.C. (2009). Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Química Nova, 32, 639-648.

Oliveira, M.R., Silva, R.S.S.F., Buzato, J.B., & Celligoi, M.A.P.C. (2007). Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochemical Engineering Journal, 37, 177-183. http://dx.doi.org/10.1016/j.bej.2007.04.009

Prasanna, P.H.P., Bell, A., Grandison, A.S., & Charalampopoulos, D. (2012). Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydrate Polymers, 90, 533-540. http://dx.doi.org/10.1016/j.carbpol.2012.05.075

Prieto, L.M., Michelon, M., Burkert, J.F.M., Kalil, S.J., & Burkert, C.A.V. (2008). The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere, 71, 1781-1785. http://dx.doi.org/10.1016/j.chemosphere.2008.01.003

Reis, E.C., Almeida, M., Cardoso, J.C., Pereira, M.A., Oliveira, C.B.Z., Venceslau, E.M., Druzian, J.I., Mariano, R., & Padilha, F.F. (2010). Biopolymer synthesized by strains of Xanthomonas sp isolate from Brazil using biodiesel-waste. Macromolecular Symposia, 296, 347-353. http://dx.doi.org/10.1002/masy.201051048

Rottava, I., Batesini, G., Silva, M.F., Lerin, L., Oliveira, D., Padilha, F.F., Toniazzo, G., Mossi, A., Cansian, R.L., Di Luccio, M., & Treichel, H. (2009). Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydrate Polymers, 77, 65-71. http://dx.doi.org/10.1016/j.carbpol.2008.12.001

Silbir, S., Dagbagli, S., Yegin, S., Baysal, T., & Goksungur, Y. (2014). Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydrate Polymers, 99, 454-461, 2014. http://dx.doi.org/10.1016/j.carbpol.2013.08.031

Silva, G.P., Mack, M., & Contiero, J. (2009a). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27, 30–39. http://dx.doi.org/10.1016/j.biotechadv.2008.07.006

Silva, M.F., Fornari, R.C.G., Mazutti, M.A., Oliveira, D., Padilha, F.F., Cichoski, A.J., Cansian, R.L., Di Luccio, M., & Treichel, H. (2009b). Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. Journal of Food Engineering, 90, 119-123. http://dx.doi.org/10.1016/j.jfoodeng.2008.06.010

Staudt, A.K., Wolfe, L.G., & Shrout, J.D. (2012). Variations in exopolysaccharide production by Rhizobium tropici. Archives of Microbiology, 194, 197-206. http://dx.doi.org/10.1007/s00203-011-0742-5

West, T.P., & Strohfus, B. (1998). Effect of carbon source on exopolysaccharide production by Sphingomonas paucimobilis ATCC 31461. Microbiological Research, 153, 327-329. http://dx.doi.org/10.1016/S0944-5013(99)80045-7

Zhang, J., Dong, Y-C., Fan, L-L., Jiao, Z-H., & Chen, Q-H. (2015). Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydrate Polymers, 115, 694-700. http://dx.doi.org/10.1016/j.carbpol.2014.09.029

Zhu, G., Sheng, L., & Tong, Q. (2013). A new strategy to enhance gellan production by two-stage culture in Sphingomonas paucimobilis. Carbohydrate Polymers, 98, 829-834. http://dx.doi.org/10.1016/j.carbpol.2013.06.060




DOI: https://doi.org/10.5296/jab.v3i2.7695

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Journal of Applied Biotechnology



To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Copyright © Macrothink Institute   ISSN 2327-0640