Ontology Application for the Organizational Goals

Tengku Adil Tengku Izhar, Mohd Shamsul Mohd Shoid

Abstract


Data is important in assisting decision-making in relation to the organizational goals. However, the trustworthiness of organizational data in relation to achieving the organizational goals is often questioned because of the vast amount of organizational data available. This paper advances the understanding of the organizational goals model based on ontology. This refers to the importance of assisting the organization to utilize relevant organizational data for decision-making in relation to the organizational goals. Therefore, domain experts and entrepreneurs can make a decision to what extend the organizational goals are achieved. The results show that ontology supports the relationship between the organizational goal elements as an effort to measure organizational data in relation to the organizational goals.


Full Text:

PDF

References


Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2014). Synergies of data mining and miltiple attribute decision making. Procedia-Social and Behavioral Sciences, 110(24), 767-776. https://doi.org/10.1016/j.sbspro.2013.12.921

Alkhattabi, M., Neagu, D., & Cullen, A. (2011). Assessing information quality of e-learning systems: a web mining approach. Computers in Human Behavior, 27(2), 862-873. https://doi.org/10.1016/j.chb.2010.11.011

Almeida, M. B., & Barbosa, R. R. (2009). Ontologies in knowledge management support: a case study. Journal of the American Society for Information Science and Technology, 60(10), 2032-2047. https://doi.org/10.1002/asi.21120

Azma, F., & Mostafapour, M. A. (2012). Business intelligence as a key strategy for development organizations. Procedia Technology, 1, 102-106. https://doi.org/10.1016/j.protcy.2012.02.020

Cheng, T., Wang, Y., & Sun, Y. (2012). Development and application of tender evaluation decision-making and risk early warning system for water projects based on KDD. Advances in Engineering Software, 48, 58-69. https://doi.org/10.1016/j.advengsoft.2012.02.003

Cho, J., Han, S., & Kim, H. (2006). Meta-ontology for automated information integration of parts libraries. Computer-Aided Design, 38(7), 713-725. https://doi.org/10.1016/j.cad.2006.03.002

Christen, P. (2008). Automatic record linkage using seeded neareast neighbour and support vector machine classification. Paper presented at the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA. https://doi.org/10.1145/1401890.1401913

Christen, P. (2012). A survey of indexing techniques for scalable record linkage and deduplication. IEEE Transaction on Knowledge and Data Engineering, 24(9), 1537-1555. https://doi.org/10.1109/TKDE.2011.127

Durham, E., Xue, Y., Kantarcioglu, M., & Malin, B. (2012). Quantifying the correctness, computational complexity, and security of privacy-preserving string comparators for record linkage. Information Fusion, 13(4), 245-259. https://doi.org/10.1016/j.inffus.2011.04.004

Ferrante, A., & Boyd, K. (2012). A transparent and transportable methodology for evaluating Data Linkage software. Journal of Biomedical Informatics, 45(1), 165-172. https://doi.org/10.1016/j.jbi.2011.10.006

Fox, M. S., Barbuceanu, M., & Gruninger, M. (1996). An organisation ontology for enterprise modeling: Preliminary concepts for linking structure and behaviour. Computers in Industry, 29(1-2), 123-134. https://doi.org/10.1016/0166-3615(95)00079-8

Fox, M. S., Barbuceanu, M., Gruninger, M., & Lin, J. (1998). An organization ontology for enterprise modelling Simulation organizations: Computational models of institutions and groupsAAAI/MIT Press (pp. 131-152).

Goel, S., & Chengalur-Smith, I. N. (2010). Metrics for characterizing the form of security policies. Journal of Strategies Information Systems, 19(4), 281-295. https://doi.org/10.1016/j.jsis.2010.10.002

Izhar, T. A. T., Torabi, T., Bhatti, I., & Liu, F. (2012). Analytical dependency between organisational goals and actions: Modelling concept. Paper presented at the International Conference on Innovation and Information Management (ICIIM 2012) Chengdu, China.

Izhar, T. A. T., Torabi, T., Bhatti, M. I., & Liu, F. (2013). Recent developments in the organization goals conformance using ontology. Expert Systems with Applications, 40(10), 4252-4267. https://doi.org/10.1016/j.eswa.2013.01.025

Lee, Y.-C., Hong, T.-P., & Wang, T.-C. (2008). Multi-level fuzzy mining with multiple minimum supports. Expert Systems with Applications, 34(1), 459-468. https://doi.org/10.1016/j.eswa.2006.09.011

Lin, C., Lin, C.-M., Li, S.-T., & Kuo, S.-C. (2008). Intelligent physician segmentation and management based on KDD approach. Expert Systems with Applications, 34(3), 1963-1973. https://doi.org/10.1016/j.eswa.2007.02.038

Mansingh, G., Osei-Bryson, K.-M., & Reichgelt, H. (2009). Building ontology-based knowledge maps to assist knowledge process outsourcing decisions. Knowledge Management Research and Practice, 7, 37-51. https://doi.org/10.1057/kmrp.2008.37

Mikroyannidis, A., & Theodoulidis, B. (2010). Ontology management and evolution for businee intelligence. International Journal of Information Management, 30(6), 559-566. https://doi.org/10.1016/j.ijinfomgt.2009.10.002

Nofal, M. I., & Yusof, Z. M. (2013). Integration of business intelligence and enterprise resource planning within organizations. Procedia Technology, 11, 658-665. https://doi.org/10.1016/j.protcy.2013.12.242

Omerzel, D. G., & Antoncic, B. (2008). Critical entrepreneurs knowledge dimensions for the SME performance. Industrial Management and Data System, 8(9), 1182-1199. https://doi.org/10.1108/02635570810914883

Popova, V., & Sharpanskykh, A. (2011). Formal modelling of organisational goals based on performance indicators. Data & Knowledge Engineering, 70(4), 335-364. https://doi.org/10.1016/j.datak.2011.01.001

Popovic, A., Hackney, R., Coelho, P. S., & Jaklic, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017

Pundt, H., & Bishr, Y. (2002). Domain ontologies for data sharing-an example from environmental monitoring using field GIS. Computer & Geosciences, 28(1), 95-102. https://doi.org/10.1016/S0098-3004(01)00018-8

Rao, L., Mansingh, G., & Osei-Bryson, K.-M. (2012). Building ontology based knowledge maps to assist business process re-engineering. Decision Support Systems, 52(3), 577-589. https://doi.org/10.1016/j.dss.2011.10.014

Rao, L., Reichgelt, H., & Osei-Bryson, K.-M. (2009). An approach for ontology development and assessment using a quality framework. Knowledge Management Research and Practice, 7(3), 260-276. https://doi.org/10.1057/kmrp.2009.12

Romero, O., & Abello, A. (2010). A framework for multidimensional design of data warehouses from ontologies. Data & Knowledge Engineering, 69(11), 1138-1157. https://doi.org/10.1016/j.datak.2010.07.007

Schalenkamp, K., & Smith, W. L. (2008). Entrepreneurial skills assessment: the perspective of SBDC directors. International Journal of Management and Entreprise Development, 5(1), 18-29. https://doi.org/10.1504/IJMED.2008.015904

Schalken, J., & Vliet, H. v. (2008). Measuring where it metters: Determining starting points for metrics collection. The Journal of System and Software, 81(5), 603-615. https://doi.org/10.1016/j.jss.2007.07.041

Selma, K., Ilyes, B., Ladjel, B., Eric, S., Stephane, J., & Michael, B. (2012). Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Computer in Industry, 63(8), 799-812. https://doi.org/10.1016/j.compind.2012.08.001

Seng, J.-L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057. https://doi.org/10.1016/j.eswa.2010.05.083

Sharma, S., & Osei-Bryson, K.-M. (2008). Organization-ontology based framework for implementing the business understanding phase of data mining projects. Paper presented at the International Conference on System Sciences, Hawaii. https://doi.org/10.1109/HICSS.2008.339

Simsek, Z., Lubatkin, M. H., Veiga, J. F., & Dino, R. N. (2009). The role of an entrepreneurially alert information system in promoting corporate entrepreneurship. Journal of Business Research., 62(8), 810-817. https://doi.org/10.1016/j.jbusres.2008.03.002

Smith, W. L., Schalenkamp, K., & Eicholz, D. E. (2007). Entrepreneurial skills assessment: an exploratory study. International Journal of Management, 4(2), 179-201. https://doi.org/10.1504/IJMED.2007.011791

Valiente, M.-C., Garcia-Barriocanal, E., & Sicilia, M.-A. (2012). Applying an ontology approach to IT service management for business-IT integration. Knowledge-Based Systems, 28, 76-87. https://doi.org/10.1016/j.knosys.2011.12.003

Vergidis, K., Turner, C. J., & Tiwari, A. (2008). Business process perspectives: Theoretical developments vs real world practice. International Journal of Production Economics, 114(1), 91-104. https://doi.org/10.1016/j.ijpe.2007.12.009

Weerdt, J. D., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process mining for the multi-faceted analysis of business processes- A case study in a financial services organization. Computers in Industry, 64(1), 57-67. https://doi.org/10.1016/j.compind.2012.09.010

Zandi, F. (2014). A bi-level interactive decision support framework to identify data mining- oriented electronic health record architectures. Applied Soft Computing, 18, 136-145. https://doi.org/10.1016/j.asoc.2014.01.001




DOI: https://doi.org/10.5296/ijhrs.v10i4.17839

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Copyright © Macrothink Institute   ISSN 2162-3058

'Macrothink Institute' is a trademark of Macrothink Institute, Inc.