Identification of Key Genes Related with Alzheimer’s Disease Treatment Through Bioinformatics Analysis

Pan Liu, Hongjia Qian, Liqun Wang


T0901317, a live X receptor agonist, can reduce amyloid β generation in vitro and in a mouse Alzheimer’s disease (AD) model. To investigate the global molecular effects of T0901317 in mouse hippocampus, we downloaded public GSE31624 generated from the hippocampus of wild-type mice, Tg2576 mice and T0901317-treated Tg2576 mice. Differentially-expressed genes (DEGs) were identified on LIMMA of R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were analyzed through DAVID. Protein- protein interaction and hub genes were obtained based on STRING and Cytoscape. Nine downregulated and 68 upregulated DEGs in T0901317-treated Tg2576 were identified in comparison with untreated Tg2576 mice. Annotation analyses showed these DEGs correlated with transport (BP), membrane (CC) and binding (MF) terms and the dopaminergic synapse pathway. Protein-protein interaction network was built to find out some hub genes by maximal clique centrality. Discs large homolog 4 (Dlg4), the most outstanding gene, was associated with cognition improvement in aged AD mice. T0901317 may impact the development by regulating the Dlg4 expression. In conclusion, we investigated effects of T0901317 therapy on gene expression profiles in the hippocampus of Tg2576 mice and found Dlg4 may serve as putative therapeutics target for AD treatment.

Full Text:




  • There are currently no refbacks.

Copyright (c) 2018 Liqun Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Biology and Life Science  ISSN 2157-6076

Copyright © Macrothink Institute

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.